著者
Toru Shirai Ryota Sato Yasuo Kawata Yoshitaka Bito Hisaaki Ochi
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0043, (Released:2022-11-12)
参考文献数
26
被引用文献数
2

Purpose: Quantitative susceptibility mapping (QSM) is useful for obtaining biological information. To calculate susceptibility distribution, it is necessary to calculate the local field caused by the differences of susceptibility between the tissues. The local field can be obtained by removing a background field from a total field acquired by MR phase image. Conventional approaches based on spherical mean value (SMV) filtering, which are widely used for background field calculations, fail to calculate the background field of the brain surface region corresponding to the radius of the SMV kernel, and consequently cannot calculate the QSM of the brain surface region. Accordingly, a new method calculating the local field by expansively removing the background field is proposed for whole brain QSM.Methods: The proposed method consists of two steps. First, the background field of the brain surface is calculated from the total field using a locally polynomial approximation of spherical harmonics. Second, the whole brain local field is calculated by SMV filtering with a constraint term of the background field of the brain surface. The parameters of the approximation were optimized to reduce calculation errors through simulations using both a numerical phantom and a measured human brain. Performance of the proposed method with the optimized parameters was quantitatively and visually compared with conventional methods in an experiment of five healthy volunteers.Results: The proposed method showed the accurate local field over the expanded brain region in the simulation studies. It also showed consistent QSM with conventional methods inside of the brain surface and showed clear vein structures on the brain surface.Conclusion: The proposed method enables accurate calculation of whole brain QSM without eroding the brain surface region while maintaining same values inside of the brain surface as the conventional methods.
著者
Naoto Fujita Suguru Yokosawa Toru Shirai Yasuhiko Terada
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2023-0031, (Released:2023-07-28)
参考文献数
45

Purpose: Deep neural networks (DNNs) for MRI reconstruction often require large datasets for training. Still, in clinical settings, the domains of datasets are diverse, and how robust DNNs are to domain differences between training and testing datasets has been an open question. Here, we numerically and clinically evaluate the generalization of the reconstruction networks across various domains under clinically practical conditions and provide practical guidance on what points to consider when selecting models for clinical application.Methods: We compare the reconstruction performance between four network models: U-Net, the deep cascade of convolutional neural networks (DC-CNNs), Hybrid Cascade, and variational network (VarNet). We used the public multicoil dataset fastMRI for training and testing and performed a single-domain test, where the domains of the dataset used for training and testing were the same, and cross-domain tests, where the source and target domains were different. We conducted a single-domain test (Experiment 1) and cross-domain tests (Experiments 2–4), focusing on six factors (the number of images, sampling pattern, acceleration factor, noise level, contrast, and anatomical structure) both numerically and clinically.Results: U-Net had lower performance than the three model-based networks and was less robust to domain shifts between training and testing datasets. VarNet had the highest performance and robustness among the three model-based networks, followed by Hybrid Cascade and DC-CNN. Especially, VarNet showed high performance even with a limited number of training images (200 images/10 cases). U-Net was more robust to domain shifts concerning noise level than the other model-based networks. Hybrid Cascade showed slightly better performance and robustness than DC-CNN, except for robustness to noise-level domain shifts. The results of the clinical evaluations generally agreed with the results of the quantitative metrics.Conclusion: In this study, we numerically and clinically evaluated the robustness of the publicly available networks using the multicoil data. Therefore, this study provided practical guidance for clinical applications.
著者
Yo Taniguchi Suguru Yokosawa Toru Shirai Ryota Sato Tomoki Amemiya Yoshihisa Soutome Yoshitaka Bito Hisaaki Ochi
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0045, (Released:2022-07-30)
参考文献数
21
被引用文献数
3

Purpose: MR parameter mapping is a technique that obtains distributions of parameters such as relaxation time and proton density (PD) and is starting to be used for disease quantification in clinical diagnoses. Quantitative susceptibility mapping is also promising for the early diagnosis of brain disorders such as degenerative neurological disorders. Therefore, we developed an MR quantitative parameter mapping (QPM) method to map four tissue-related parameters (T1, T2*, PD, and susceptibility) and B1 simultaneously by using a 3D partially RF-spoiled gradient echo (pRSGE). We verified the accuracy and repeatability of QPM in phantom and volunteer experiments.Methods: Tissue-related parameters are estimated by varying four scan parameters of the 3D pRSGE: flip angle, RF-pulse phase increment, TR and TE, performing multiple image scans, and finding a least-squares fit for an intensity function (which expresses the relationship between the scan parameters and intensity values). The intensity function is analytically complex, but by using a Bloch simulation to create it numerically, the least-squares fitting can be used to estimate the quantitative values. This has the advantage of shortening the image-reconstruction processing time needed to estimate the quantitative values than with methods using pattern matching.Results: A 1.1-mm isotropic resolution scan covering the whole brain was completed with a scan time of approximately 12 minutes, and the reconstruction time using a GPU was approximately 1 minute. The phantom experiments confirmed that both the accuracy and repeatability of the quantitative values were high. The volunteer scans also confirmed that the accuracy of the quantitative values was comparable to that of conventional methods.Conclusion: The proposed QPM method can map T1, T2*, PD, susceptibility, and B1 simultaneously within a scan time that can be applied to human subjects.
著者
Shota Kondo Yuko Nakamura Toru Higaki Takashi Nishihara Masahiro Takizawa Toru Shirai Motoshi Fujimori Yoshitaka Bito Keigo Narita Takahiro Sueoka Yukiko Honda Chihiro Tani Kazuo Awai
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2022-0041, (Released:2022-06-01)
参考文献数
26

Purpose: The wavelet denoising with geometry factor weighting (g-denoising) method can reduce the image noise by adapting to spatially varying noise levels induced by parallel imaging. The aim of this study was to investigate the clinical applicability of g-denoising on hepatobiliary-phase (HBP) images with gadoxetic acid.Methods: We subjected 53 patients suspected of harboring hepatic neoplastic lesions to gadoxetic acid-enhanced HBP imaging with and without g-denoising (g+HBP and g–HBP). The matrix size was reduced for g+HBP images to avoid prolonging the scanning time. Two radiologists calculated the SNR, the portal vein-, and paraspinal muscle contrast-to-noise ratio (CNR) relative to the hepatic parenchyma (liver-to-portal vein- and liver-to-muscle CNR). Two other radiologists independently graded the sharpness of the liver edge, the visibility of intrahepatic vessels, the image noise, the homogeneity of liver parenchyma, and the overall image quality using a 5-point scale. Differences between g–HBP and g+HBP images were determined with the two-sided Wilcoxon signed-rank test.Results: The liver-to-portal- and liver-to-muscle CNR and the SNR were significantly higher on g+HBP- than g–HBP images (P < 0.01), as was the qualitative score for the image noise, homogeneity of liver parenchyma, and overall image quality (P < 0.01). Although there were no significant differences in the scores for the sharpness of the liver edge or the score assigned for the visibility of intrahepatic vessels (P = 0.05, 0.43), with g+HBP the score was lower in three patients for the sharpness of the liver edge and in six patients for the visibility of intrahepatic vessels.Conclusion: At gadoxetic acid-enhanced HBP imaging, g-denoising yielded a better image quality than conventional HBP imaging although the anatomic details may be degraded.
著者
Akinori Yamaguchi Kohsuke Kudo Ryota Sato Yasuo Kawata Niki Udo Masaaki Matsushima Ichiro Yabe Makoto Sasaki Masafumi Harada Noriyuki Matsukawa Toru Shirai Hisaaki Ochi Yoshitaka Bito
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2021-0015, (Released:2022-03-10)
参考文献数
28
被引用文献数
1

Purpose: Studies on quantitative susceptibility mapping (QSM) have reported an increase in magnetic susceptibilities in patients with Alzheimer’s disease (AD). Despite the pathological importance of the brain surface areas, they are sometimes excluded in QSM analysis. This study aimed to reveal the efficacy of QSM analysis with brain surface correction (BSC) and/or vein removal (VR) procedures.Methods: Thirty-seven AD patients and 37 age- and sex-matched, cognitively normal (CN) subjects were included. A 3D-gradient echo sequence at 3T MRI was used to obtain QSM. QSM images were created with regularization enabled sophisticated harmonic artifact reduction for phase data (RESHARP) and constrained RESHARP with BSC and/or VR. We conducted ROI analysis between AD patients and CN subjects who did or did not undergo BSC and/or VR using a t-test, to compare the susceptibility values after gray matter weighting.Results: The susceptibility values in RESHARP without BSC were significantly larger in AD patients than in CN subjects in one region (precentral gyrus, 8.1 ± 2.9 vs. 6.5 ± 2.1 ppb) without VR and one region with VR (precentral gyrus, 7.5 ± 2.8 vs. 5.9 ± 2.0 ppb). Three regions in RESHARP with BSC had significantly larger susceptibilities without VR (precentral gyrus, 7.1 ± 2.0 vs. 5.9 ± 2.0 ppb; superior medial frontal gyrus, 5.7 ± 2.6 vs. 4.2 ± 3.1 ppb; putamen, 47,8 ± 16.5 vs. 40.0 ± 15.9 ppb). In contrast, six regions showed significantly larger susceptibilities with VR in AD patients than in CN subjects (precentral gyrus, 6.4 ± 1.9 vs. 4.9 ± 2.7 ppb; superior medial frontal gyrus, 5.3 ± 2.7 vs. 3.7 ± 3.3 ppb; orbitofrontal cortex, –2.1 ± 2.7 vs. –3.6 ± 3.2 ppb; parahippocampal gyrus, 0.1 ± 3.6 vs. –1.7 ± 3.7 ppb; putamen, 45.0 ± 14.9 vs. 37.6 ± 14.6 ppb; inferior temporal gyrus, –3.4 ± 1.5 vs. –4.4 ± 1.5 ppb).Conclusion: RESHARP with BSC and VR showed more regions of increased susceptibility in AD patients than in CN subjects. This study highlights the efficacy of this method in facilitating the diagnosis of AD.
著者
Masato Yoshikawa Kohsuke Kudo Taisuke Harada Kazutaka Harashima Jun Suzuki Koji Ogawa Taro Fujiwara Mutsumi Nishida Ryota Sato Toru Shirai Yoshitaka Bito
出版者
Japanese Society for Magnetic Resonance in Medicine
雑誌
Magnetic Resonance in Medical Sciences (ISSN:13473182)
巻号頁・発行日
pp.mp.2020-0175, (Released:2021-09-04)
参考文献数
46
被引用文献数
3

Purpose: The staging of liver fibrosis is clinically important, and a less invasive method is preferred. Quantitative susceptibility mapping (QSM) has shown a great potential in estimating liver fibrosis in addition to R2* relaxometry. However, few studies have compared QSM analysis and liver fibrosis. We aimed to evaluate the feasibility of estimating liver fibrosis by using QSM and R2*-based histogram analyses by comparing it with ultrasound-based transient elastography and the stage of histologic fibrosis.Methods: Fourteen patients with liver disease were enrolled. Data sets of multi-echo gradient echo sequence with breath-holding were acquired on a 3-Tesla scanner. QSM and R2* were reconstructed by water–fat separation method, and ROIs were analyzed for these images. Quantitative parameters with histogram features (mean, variance, skewness, kurtosis, and 1st, 10th, 50th, 90th, and 99th percentiles) were extracted. These data were compared with the elasticity measured by ultrasound transient elastography and histological stage of liver fibrosis (F0 to F4, based on the new Inuyama classification) determined by biopsy or hepatectomy. The correlation of histogram parameters with intrahepatic elasticity and histologically confirmed fibrosis stage was examined. Texture parameters were compared between subgroups divided according to fibrosis stage. Receiver operating characteristic (ROC) analysis was also performed. P < 0.05 indicated statistical significance.Results: The six histogram parameters of both QSM and R2*were significantly correlated with intrahepatic elasticity. In particular, three parameters (variance, percentiles [90th and 99th]) of QSM showed high correlation (r = 0.818–0.844), whereas R2* parameters showed a moderate correlation with elasticity. Four parameters of QSM were significantly correlated with fibrosis stage (ρ = 0.637–0.723) and differentiated F2–4 from F0–1 fibrosis and F3–4 from F0–2 fibrosis with areas under the ROC curve of > 0.8, but those of R2* did not.Conclusion: QSM may serve as a promising surrogate indicator in detecting liver fibrosis.