著者
Kaoru KOBAYASHI Eri KAJIWARA Masayuki ISHIKAWA Hanaka MIMURA Hidenobu OKA Yoko EJIRI Masaya HOSODA Kan CHIBA
出版者
日本薬物動態学会 会長/日本薬物動態学会 DMPK編集委員長
雑誌
Drug Metabolism and Pharmacokinetics (ISSN:13474367)
巻号頁・発行日
vol.28, no.3, pp.265-268, 2013 (Released:2013-06-25)
参考文献数
18
被引用文献数
14

Treatment with benzbromarone (BBR), a potent uricosuric drug, can be associated with liver injury. Recently, we reported that culture of human hepatocellular carcinoma FLC-4 cells on micro-space cell culture plates could increase the functional expression of drug-metabolizing enzymes including CYP3A4 and CYP2C9, which are involved in 1′-hydroxylation and 6-hydroxylation of BBR, respectively. Therefore, we examined whether BBR and its two metabolites (1′-hydroxy BBR and 6-hydroxy BBR) have cytotoxic effects in FLC4 cells cultured on micro-space cell culture plates. The present study showed that BBR and 1′-hydroxy BBR, but not 6-hydroxy BBR, have cytotoxic effects in cells cultured on micro-space cell culture plates. BBR-induced cytotoxicity was decreased by CYP3A inhibitors (itraconazole and ketoconazole), an Nrf2 activator (tert-butylhydroquinone) and a GSH precursor (N-acetyl-L-cystein). In contrast, BBR-induced cytotoxicity was increased by a GSH biosynthesis inhibitor (buthionine sulfoximine) and an inhibitor of NAD(P)H quinone oxidoreductase 1 (dicoumarol). These results suggested that metabolic activation of 1′-hydroxy BBR via CYP3A, formation of quinone metabolites and the decrease in GSH levels were involved in the BBR-induced cytotoxicity observed in FLC4 cells cultured on micro-space cell culture plates.
著者
Kaoru KOBAYASHI Akane YOSHIDA Yoko EJIRI Sachiko TAKAGI Hanaka MIMURA Masaya HOSODA Tomokazu MATSUURA Kan CHIBA
出版者
日本薬物動態学会 会長/日本薬物動態学会 DMPK編集委員長
雑誌
Drug Metabolism and Pharmacokinetics (ISSN:13474367)
巻号頁・発行日
vol.27, no.5, pp.478-485, 2012 (Released:2012-10-26)
参考文献数
21
被引用文献数
18

Human hepatocellular carcinoma cell lines cultured in a monolayer show negligible activities of drug-metabolizing enzymes such as cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs). Here, we show that culture of human hepatocellular carcinoma FLC-4 cells on 24-well plates arrayed with uniform micro-sized compartments on the bottom of the plates (micro-space cell culture plates) resulted in increased expression of drug-metabolizing enzymes (CYP1A2, CYP2C9, CYP3A4, UGT1A1, etc.) and nuclear receptors (pregnane X receptor, constitutive androstane receptor, etc.). When cells were treated with a typical CYP3A substrate (triazolam), CYP2C9 substrate (diclofenac) or UGT1A1 substrate (SN-38), large amounts of their metabolites were detected in the medium of cells cultured on micro-space cell culture plates. The formation of metabolites from triazolam, diclofenac and SN-38 was strongly inhibited by co-treatment with a CYP3A inhibitor (ketoconazole), CYP2C9 inhibitor (sulfaphenazole) and UGT1A1 inhibitor (ketoconazole), respectively. On the other hand, formation of metabolites was not observed in the medium of cells cultured in a monolayer. Finally, the cytotoxic effect of aflatoxin B1 was more potent in cells cultured on micro-space cell culture plates than in cells cultured in a monolayer. The results suggest that FLC-4 cells cultured on micro-space cell culture plates are useful for studying drug metabolism and drug-induced hepatotoxicity.