著者
Kana Miyata Shun Hasegawa Emi Nakajima Yoko Nishizawa Kota Kamiya Hirotaka Yokogawa Subaru Shirasaka Shingo Maruyama Naoto Shibuya Hanae Kaku
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.39, no.2, pp.119-128, 2022-06-25 (Released:2022-06-25)
参考文献数
36
被引用文献数
6

In rice, the lysin motif (LysM) receptor-like kinase OsCERK1, originally identified as the essential molecule for chitin-triggered immunity, plays a key role in arbuscular mycorrhizal (AM) symbiosis. As we previously reported, although AM colonization was largely repressed at 2 weeks after inoculation (WAI), arbuscules were observed at 5 WAI in oscerk1 mutant. Conversely, most mutant plants that defect the common symbiosis signaling pathway exhibited no arbuscule formation. Concerning the reason for this characteristic phenotype of oscerk1, we speculated that OsRLK10, which is a putative paralog of OsCERK1, may have a redundant function in AM symbiosis. The protein sequences of these two genes are highly conserved and it is estimated that the gene duplication occurred 150 million years ago. Here we demonstrated that OsCERK2/OsRLK10 induced AM colonization and chitin-triggered reactive oxygen species production in oscerk1 knockout mutant as similar to OsCERK1. The oscerk2 mutant showed a slight but significant reduction of AM colonization at 5 WAI, indicating the contribution of OsCERK2 for AM symbiosis. However, the oscerk2;oscerk1 double-knockout mutant produced arbuscules at 5 WAI as similar to the oscerk1 mutant, indicating that the redundancy of OsCERK1 and OsCERK2 did not explain the mycorrhizal colonization in oscerk1 at 5 WAI. These results indicated that OsCERK2 has a potential to regulate both chitin-triggered immunity and AM symbiosis and at least partially contributes to AM symbiosis in rice though the contribution of OsCERK2 appears to be weaker than that of OsCERK1.
著者
Takafumi SHIMIZU Koji MIYAMOTO Kanako MIYAMOTO Eiichi MINAMI Yoko NISHIZAWA Moritoshi IINO Hideaki NOJIRI Hisakazu YAMANE Kazunori OKADA
出版者
(社)日本農芸化学会
雑誌
Bioscience, Biotechnology, and Biochemistry (ISSN:09168451)
巻号頁・発行日
vol.77, no.7, pp.1556-1564, 2013-07-23 (Released:2013-07-23)
参考文献数
41
被引用文献数
51

Jasmonate plays key roles in plant growth and stress responses, as in defense against pathogen attack. Jasmonoyl-isoleucine (JA-Ile), a major active form of jasmonates, is thought to play a pivotal role in plant defense responses, but the involvement of JA-Ile in rice defense responses, including phytoalexin production, remains largely unknown. Here we found that OsJAR1 contributes mainly to stress-induced JA-Ile production by the use of an osjar1 Tos17 mutant. The osjar1 mutant was impaired in JA-induced expression of JA-responsive genes and phytoalexin production, and these defects were restored genetically. Endogenous JA-Ile was indispensable to the production of a flavonoid phytoalexin, sakuranetin, but not to that of diterpenoid phytoalexins in response to heavy metal stress and the rice blast fungus. The osjar1 mutant was also found to be more susceptible to the blast fungus than the parental wild type. These results suggest that JA-Ile production makes a contribution to rice defense responses with a great impact on stress-induced sakuranetin production.