- 著者
-
Masaki Takigawa
Hirofumi Masutomi
Yuki Kishimoto
Yoshitomo Shimazaki
Yoshitomo Hamano
Yoshitaka Kondo
Tomio Arai
Jaewon Lee
Toshihiro Ishii
Yoshiko Mori
Akihito Ishigami
- 出版者
- The Pharmaceutical Society of Japan
- 雑誌
- Biological and Pharmaceutical Bulletin (ISSN:09186158)
- 巻号頁・発行日
- vol.40, no.7, pp.975-983, 2017-07-01 (Released:2017-07-01)
- 参考文献数
- 21
- 被引用文献数
-
1
8
Vancomycin hydrochloride (VCM) is a glycopeptide antibiotic that is commonly used against methicillin-resistant, Gram-positive cocci despite the nephrotoxic side effects. VCM-induced nephrotoxicity has been reported in 5–28% of recipient patients. Therefore, renal failure induced by VCM has become an important clinical problem. However, the exceedingly complex mechanism of VCM-induced nephrotoxicity is not fully understood. Therefore, this study was designed to clarify time-dependent alterations of VCM-induced nephrotoxicity in mice as a step toward decreasing the risks of kidney injury associated with VCM therapy. VCM was injected intraperitoneally into mice at a dose of 400 mg/kg body weight at 24-h intervals for 3, 5, 7, and 14 d. At 24 h after the last injection, we examined histopathological alterations of the kidney as well as blood biochemistry. VCM administration resulted in a decrease of body weight and increase of kidney weight. Histological examination revealed renal damage such as dilated proximal tubules with occasional casts and interstitial fibrosis in VCM-treated mice. Furthermore, immunohistochemical staining with anti-CD10 and anti-single-stranded DNA antibodies highlighted damaged renal proximal tubules with marked dilatation as well as numerous apoptotic cells as early as day 4 of VCM-treatment. The severity of symptoms progressed until day 15. These results suggest that VCM-induced renal damage and incipient renal failure begin soon after the start of treatment and progressively worsen. This is the first report describing the time-dependence of VCM-induced nephrotoxicity in mice and depicting a model that clarifies the mechanisms of this tissue damage.