著者
JUN-ICHIRO ISHIBASHI TAKUROH NOGUCHI TOMOHIRO TOKI SHUNSUKE MIYABE SHOSEI YAMAGAMI YUJI ONISHI TOSHIRO YAMANAKA YUKA YOKOYAMA ERIKO OMORI YOSHIO TAKAHASHI KENTA HATADA YUZURU NAKAGUCHI MOTOKO YOSHIZAKI UTA KONNO TAKAZO SHIBUYA KEN TAKAI FUMIO INAGAKI SHINSUKE KAWAGUCCI
出版者
GEOCHEMICAL SOCIETY OF JAPAN
雑誌
GEOCHEMICAL JOURNAL (ISSN:00167002)
巻号頁・発行日
vol.48, no.4, pp.357-369, 2014-07-20 (Released:2014-07-31)
参考文献数
48
被引用文献数
23 67

Two active hydrothermal fields, Jade and Hakurei fields have been discovered within the Izena Hole, a rectangular 6 km × 3 km shape depression located in the middle Okinawa Trough back arc basin. In both fields, intense hydrothermal activity is represented by venting of high-temperature fluid (>300°C) and occurrence of sulfide/sulfate ore deposits. We collected hydrothermal fluids during dive expeditions of ROV Hyper Dolphin conducted in 2003, 2010 and 2011, in order to analyze both elemental and gas species. The geochemistry of high temperature hydrothermal fluids collected from the Jade and Hakurei fields is very similar to each other with exceptions in minor gas composition. Little temporal variation was observed in geochemistry of the high-temperature hydrothermal fluid of the Jade field over two decades, since a previous study carried out in 1989. These results suggest that these fluids are derived from a common fluid reservoir where fluid chemistry is basically controlled by fluid-mineral equilibria and gas species are dominantly contributed from the same magma. Venting of low temperature fluid (about 104°C) was discovered in the distal part of the Jade field, which was named as the Biwako vent. Chemical composition of the Biwako vent fluid was distinctive from that of the high temperature fluid in the proximal part of the Jade field, and could not be explained by simple dilution or cooling. This intra-field chemical diversity could be caused by phase separation and segregation during fluid upwelling, based on relationships in concentrations of Cl and major cations. On the other hand, the chemical diversity recognized in minor gas composition between the Jade and Hakurei fields is in accordance with results from previous plume survey. Difference in concentrations of minor gases such as H2 is attributed to contribution from thermal degradation of organic matter in the sediment, during fluid upwelling.
著者
AYA SAKAGUCHI AKINOBU KADOKURA PETER STEIER KAZUYA TANAKA YOSHIO TAKAHASHI HARUKA CHIGA AKIHITO MATSUSHIMA SATORU NAKASHIMA YUICHI ONDA
出版者
GEOCHEMICAL SOCIETY OF JAPAN
雑誌
GEOCHEMICAL JOURNAL (ISSN:00167002)
巻号頁・発行日
vol.46, no.4, pp.355-360, 2012-08-20 (Released:2013-11-08)
参考文献数
26
被引用文献数
90 27

Concentrations of the radionuclides, U, Pu, and Cs were measured in water samples (10-20 L) to study analyte dispersion and migration following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. A total of 8 water samples including oceanic water and paddy-field water were collected in the vicinity of the plant. Determinations of U, Pu and Cs isotopes were performed by accelerator mass spectrometry (AMS), inductively coupled plasma mass spectrometry (ICP-MS), and γ-ray spectrometry. The 236U/238U atom ratio was in the range 1.83-8.20 × 10-9 for fresh water and around 0.57 × 10-9 for seawater while the concentration of 236U was about 104-105 and 106 atoms/kg, respectively. Plutonium (239,240Pu) was detected in one riverine sample and the marine samples at very low levels and with large uncertainty. The concentrations of 137Cs in fresh riverine samples were 0.02-0.46 Bq/kg which are more than three orders of magnitude larger than the global fallout level. As for seawater samples within 80 km offshore of the FDNPP, the concentrations of 137Cs were 10-20 times higher than that of the Japan Sea water. Also 134Cs and 137Cs were of similar concentrations in all samples. The results show that volatile and refractory nuclides such as Cs, U and Pu exist in the dissolved phase, which can be readily assimilated by plants/humans. However the environmental impact of Pu and U in the vicinity of the FDNPP is considered to be low in comparison to that of the volatile radionuclide Cs.
著者
Yoshio TAKAHASHI Kazuhiro KONDO Asami MIYAJI Miyuki UMEO Tetsuo HONMA Satoshi ASAOKA
出版者
The Japan Society for Analytical Chemistry
雑誌
Analytical Sciences (ISSN:09106340)
巻号頁・発行日
vol.28, no.10, pp.985-992, 2012-10-10 (Released:2012-10-10)
参考文献数
31
被引用文献数
9 15

Given that the supply of several rare earth elements (REEs) is sometimes limited, recycling REEs used in various advanced materials, such as Nd magnets, is important for realizing efficient use of REE resources. In the present work, the feasibility of using DNA for REE recovery and separation was examined, along with the identification of the binding site of REEs in DNA. In particular, a DNA-cellulose filter paper hybrid was prepared so that DNA-based materials can be used for the separation of REEs using columns loaded with DNA. N,N′-Disuccinimidyl was used as a cross-linker reagent for the fixation of DNA onto a fibrous cellulose filter. The results showed that (i) the DNA-filter hybrid has a sufficiently high affinity to adsorb REEs; (ii) the adsorption capacity was 0.182 mg/g for Nd; and (iii) the affinity of REEs for DNA was stronger for REEs with larger atomic numbers. The difference of the affinity among REEs in the third result was compared with the adsorption patterns of REEs discussed in the literature. The comparison suggests that phosphate in the DNA-filter paper hybrid was responsible for REE adsorption onto the hybrid. The results were supported by the Nd, Dy, and Lu LIII-edge EXAFS; the REE-P shell was identified for the second neighboring atom, showing the importance of the phosphate site as REE binding sites. The difference in the affinity among REEs suggest that group separation of REEs (such as La, Ce, (Pr and Nd), (Ho, Dy, and Er), (Tb and Gd), (Sm, Eu), Tm, Yb, and Lu) is possible, although complete isolation of each REE from a solution containing all REEs may be difficult. For practical applications, Nd and Fe(III) were successfully separated from a synthetic solution of Nd magnet waste using columns loaded with the DNA-filter hybrid.