著者
Rina Fujihara Naoyuki Uchida Toshiaki Tameshige Nozomi Kawamoto Yugo Hotokezaka Takumi Higaki Rüdiger Simon Keiko U Torii Masao Tasaka Mitsuhiro Aida
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.317-322, 2021-09-25 (Released:2021-09-25)
参考文献数
27
被引用文献数
5

The shoot organ boundaries have important roles in plant growth and morphogenesis. It has been reported that a gene encoding a cysteine-rich secreted peptide of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family, EPFL2, is expressed in the boundary domain between the two cotyledon primordia of Arabidopsis thaliana embryo. However, its developmental functions remain unknown. This study aimed to analyze the role of EPFL2 during embryogenesis. We found that cotyledon growth was reduced in its loss-of-function mutants, and this phenotype was associated with the reduction of auxin response peaks at the tips of the primordia. The reduced cotyledon size of the mutant embryo recovered in germinating seedlings, indicating the presence of a factor that acted redundantly with EPFL2 to promote cotyledon growth in late embryogenesis. Our analysis suggests that the boundary domain between the cotyledon primordia acts as a signaling center that organizes auxin response peaks and promotes cotyledon growth.
著者
Rina Fujihara Naoyuki Uchida Toshiaki Tameshige Nozomi Kawamoto Yugo Hotokezaka Takumi Higaki Rüdiger Simon Keiko U Torii Masao Tasaka Mitsuhiro Aida
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
pp.21.0508a, (Released:2021-09-18)
参考文献数
27
被引用文献数
5

The shoot organ boundaries have important roles in plant growth and morphogenesis. It has been reported that a gene encoding a cysteine-rich secreted peptide of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family, EPFL2, is expressed in the boundary domain between the two cotyledon primordia of Arabidopsis thaliana embryo. However, its developmental functions remain unknown. This study aimed to analyze the role of EPFL2 during embryogenesis. We found that cotyledon growth was reduced in its loss-of-function mutants, and this phenotype was associated with the reduction of auxin response peaks at the tips of the primordia. The reduced cotyledon size of the mutant embryo recovered in germinating seedlings, indicating the presence of a factor that acted redundantly with EPFL2 to promote cotyledon growth in late embryogenesis. Our analysis suggests that the boundary domain between the cotyledon primordia acts as a signaling center that organizes auxin response peaks and promotes cotyledon growth.