著者
Yuichi Kurita Takumi Okumura Ryota Imai Tomohiko Nishigami So Tanaka Takanori Taniguchi
出版者
Fuji Technology Press Ltd.
雑誌
Journal of Robotics and Mechatronics (ISSN:09153942)
巻号頁・発行日
vol.35, no.3, pp.612-621, 2023-06-20 (Released:2023-06-20)
参考文献数
31

Total knee arthroplasty (TKA) is the primary treatment for knee osteoarthritis. However, TKA is highly likely to result in prolonged chronic postoperative pain. The one-foot-one-step walking style is likely to induce fear of movement because of pain, leading to catastrophic thinking about the actual activity and consequently limiting movement. The aim of this study is to develop a system to induce the sensation of stair climbing through the interaction of the visual and kinesthetic senses. By controlling the amount of movement of the foot and the point of view in virtual space, the system can present a visual image of stair climbing even when the patient steps in a fixed position. This system enables easy motor imagery intervention even for early postoperative patients who have difficulty with the actual stair climbing movement. The clinical intervention experiment confirmed that the smoothness of the knee joint motion during descent was improved by intervening with motor imagery during stair ascent and descent for TKA patients.
著者
Ai Higuchi Junichiro Shiraishi Yuichi Kurita Tomohiro Shibata
出版者
Fuji Technology Press Ltd.
雑誌
Journal of Robotics and Mechatronics (ISSN:09153942)
巻号頁・発行日
vol.32, no.4, pp.798-811, 2020-08-20 (Released:2020-08-20)
参考文献数
28
被引用文献数
4

Parkinson’s disease (PD) is a common progressive neurodegenerative disease that affects a wide range of motor and non-motor symptoms. Freezing of gait (FOG) is such a motor symptom of PD that frequently results in falling, and almost half of PD patients suffer from FOG. In this study, we investigated the effectiveness of a robotic assistance system called UPS-PD, which was developed to suppress FOG. The double limb support phase (DLS) in a 10-m straight-line walking task, the gait time and step counts were measured in five PD subjects. In addition, the safety of the UPS-PD in a healthy person was investigated using OpenSim, and the DLS parameters in four healthy elderly subjects were evaluated. In the experiment with the PD patients, the DLS parameters of two subjects showed an improvement. Furthermore, the step length of one subject and the step length and walking speed of the other subject were improved. Moreover, there were no problems in terms of instability of gait in both the PD patients. The UPS-PD did not adversely affect the gait of healthy elderly subjects and the walking of a healthy subject model in the simulation. Therefore, the UPS-PD is considered to be a useful device for improving walking in PD patients.
著者
Masahiko Inami Hiroyasu Iwata Minao Kukita Yuichi Kurita Kouta Minamizawa Masaaki Mochimaru Takuji Narumi Junichi Rekimoto Kenji Suzuki
出版者
Fuji Technology Press Ltd.
雑誌
Journal of Robotics and Mechatronics (ISSN:09153942)
巻号頁・発行日
vol.33, no.5, pp.985-986, 2021-10-20 (Released:2021-10-20)

Information technologies, such as IoT, artificial intelligence (AI), and virtual reality (VR), have seen so much development that there is now a wide variety of digital equipment incorporated into the infrastructure of daily life. From the agrarian society (Society 1.0) through the information society (Society 4.0), humankind has created farmlands and cities by structuring natural environments physically and has built information environments by structuring them informationally. However, despite the rapid development of information environments, it may be fair to say that the perspectives of the human body have not changed at all since the industrial revolution.In the context of these recent technological developments, greater attention is being paid to human augmentation studies. These studies aim for a new embodiment of “human-computer integration,” one which can physically and informationally compensate or augment our innate sensory functions, motor functions, and intellectual processing functions by using digital equipment and information systems at will, as if they were our hands and feet. It has also been proposed that the technical systems that enable us to freely do what we want by utilizing human augmentations be called “JIZAI” (freedomization) as opposed to “automation.”The term “JIZAI body” used in these studies represents the new body image of humans who will utilize engineering and informatics technologies to act at will in the upcoming “super smart society” or “Society 5.0.” In these studies, human augmentation technologies are an important component of JIZAI, but JIZAI is not the same as human augmentation. JIZAI is different in scope from human augmentation, as it aims to enable humans to move freely among the five new human body images: “strengthened sense” (augmented perception), “strengthened physical body” (body augmentation), “separately-designed mind and body” (out of body transform), “shadow cloning,” and “assembling.” In the society of the future where JIZAI bodies widely prevail, we will use technologies that enable us to do what we have failed at or given up due to limitations of our physical bodies. We believe that a future society, one in which aging does not reduce our capabilities but instead increased options give us hope, can be realized. This special issue, consisting of two review papers and twelve research papers, deals with diverse and wide-ranging areas, including human augmentation, robotics, virtual reality, and others. We would like to express our sincere appreciation to all the authors and reviewers of the papers contributed to this special issue and to the editorial committee of the Journal of Robotics and Mechatronics for their gracious cooperation.
著者
Masaru Ito Yusuke Funahara Seiji Saiki Yoichiro Yamazaki Yuichi Kurita
出版者
Fuji Technology Press Ltd.
雑誌
Journal of Robotics and Mechatronics (ISSN:09153942)
巻号頁・発行日
vol.31, no.2, pp.231-239, 2019-04-20 (Released:2019-04-20)
参考文献数
15
被引用文献数
12

Japan’s construction industry has a shortage of workers and skilled operators, and the number of operators of hydraulic excavators has actually been decreasing. In addition, the operation of hydraulic excavators is complicated and non-intuitive, so learning and maintaining the skill requires a considerable amount of time and experience. One technology that could solve this problem is the tele-operated hydraulic excavator, but the most common type of tele-operated system is difficult for ordinary hydraulic excavator operators to use. The introduction of operation simulators would be effective, but simulators have to be large and expensive if the interface is reproduced in life size. In this paper, we propose a cross-platform system for operating not only a tele-operated hydraulic excavator but also a hydraulic excavator operation simulator. The cross-platform system uses a tele-operated cockpit with feedback and an interface that gives the operator the sensation of sitting in an actual hydraulic excavator. The cockpit consists of a three-dimensional visual information system using stereo videos and a head mounted display, a motion simulator seat that reproduces the vibration and tilting of the operator’s seat of a hydraulic excavator, and a lever unit used in actual hydraulic excavators. With the cross-platform system, an actual hydraulic excavator can be remotely controlled, and the same cockpit can also be used as a training simulator. One can therefore use the system as an inexpensive means of acquiring and maintaining operation skills. We have successfully produced this proposed system and checked its functions, confirming that it works practically.
著者
Masataka Yamamoto Koji Shimatani Masaki Hasegawa Takuya Murata Yuichi Kurita
出版者
The Society of Physical Therapy Science
雑誌
Journal of Physical Therapy Science (ISSN:09155287)
巻号頁・発行日
vol.30, no.8, pp.966-970, 2018 (Released:2018-07-24)
参考文献数
24
被引用文献数
7

[Purpose] The purpose of this study was to investigate the effect of changing the plantar flexion resistance of an ankle-foot orthosis on knee joint reaction and knee muscle forces. Furthermore, the influence of an ankle-foot orthosis with an over-plantar flexion resistance function on knee joint reaction force was verified. [Participants and Methods] Ten healthy adult males walked under the following three conditions: (1) no ankle-foot orthosis, and with ankle-foot orthoses with (2) a strong and (3) a weak plantar flexion resistance (ankle-foot orthosis conditions). The knee flexion angle, quadricep muscle force, hamstring muscle force, and knee joint reaction force during the stance phase were measured using a motion analysis system, musculoskeletal model, and ankle-foot orthosis model. [Results] The peak knee joint reaction force, knee flexion angle, and quadricep muscle force in the early stance phase significantly increased in the strong plantar flexion resistance condition in comparison with the “no ankle-foot orthosis” condition. [Conclusion] Increased knee joint reaction force with over-plantar flexion resistance suggests that over-plantar flexion resistance causes various knee problems such as knee pain and knee osteoarthritis.