著者
Yuichi Tada Ryuto Kochiya Masayuki Toyoizumi Yuka Takano
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.40, no.4, pp.301-309, 2023-12-25 (Released:2023-12-25)
参考文献数
36

Turfgrasses show a wide range of salinity tolerance. In this study, twenty wild turfgrasses were collected from coastal regions in Japan, and their species; evolutionary lineage; salt tolerance levels; shoot and root K+, Na+, and proline contents; and amounts of ions secreted from their salt glands were determined. Among them, eighteen turfgrass species were determined based on the internal transcribed spacer 1 sequences. All collected wild turfgrasses were identified as halophytes and were divided into two salt-tolerant levels. They maintained the shoot relative water contents and suppressed excess Na+ accumulation in their shoots and roots and K+ content homeostasis compared with rice, resulting in the maintenance of a higher K+/Na+ ratio under salt stress. These characteristics must be part of the salt tolerance mechanisms. Among the four turfgrasses with salt glands, three selectively secreted Na+ from their salt glands; however, interestingly, one secreted K+ over Na+, although it still maintained a K+/Na+ ratio comparable to that of the other turfgrasses. A significant amount of proline synthesis was observed in most of the turfgrasses in response to salt stress, and the proline content was highly correlated with the salt tolerance, suggesting its key role in the salt tolerance mechanisms. These wild turfgrasses with such diverse ion control mechanisms and proline synthesis profiles are useful materials for investigating the salt tolerant mechanisms and breeding salt tolerant turfgrasses.
著者
Yasuhiro Kato Yuichi Tada
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.4, pp.443-448, 2021-12-25 (Released:2021-12-25)
参考文献数
24
被引用文献数
4

To prepare various root active promoters for expressing transgenes and prevent gene silencing caused by the repeated use of the same promoter, the expression characteristics of various root active promoters were comparatively evaluated using GUS as a reporter gene. The high-affinity potassium transporter (HKT1;1), the Shaker family potassium ion channel (SKOR), the Shaker family inward rectifying potassium channel (AKT1), the major facilitator superfamily protein (MFS1), and the senescence associated gene 14 (SAG14) promoter from Arabidopsis (Arabidopsis thaliana) were used, and for comparison, four additional constitutive or green tissue specific promoters in the expression vectors were also employed. As the Gateway cloning technology provided by Invitrogen can offer high efficiency and cloning reliability, and easy manipulation of fusion constructs in vitro, our expression vectors are based on binary (destination) vectors compatible with this cloning technique. These destination vectors are also advantageous for stable expression of the transgene, as the heat shock protein terminator is utilized. The AtHKT1;1, SKOR, AKT1, MFS1 and SAG14 promoters were all active in roots but showed slightly different tissue specificities: AtHKT1;1, SKOR, and MFS1 were dominantly active in vascular bundle tissue, while AtHKT1;1 and MFS1— but not SKOR, AKT1, and SAG14—were active in root tips. SKOR showed the strongest root-specificity, and SAG14 showed the highest activity among the five root active promoters. The activity of MFS was developmentally regulated. These destination vectors are now available to express multiple transgenes in transgenic plants, especially in roots.