著者
Hiroshi FUJITA
出版者
一般社団法人 日本数学会
雑誌
Journal of the Mathematical Society of Japan (ISSN:00255645)
巻号頁・発行日
vol.52, no.2, pp.335-341, 2000 (Released:2007-01-23)
参考文献数
9

Using the covering game, we prove that every (lightface) Π21-set of positive Lebesgue measure contains a member which is arithmetical in 0^{\#}. This result generalizes a result for Π11 due to Sacks and Tanaka.
著者
Jianqiang Zhao
出版者
The Mathematical Society of Japan
雑誌
Journal of the Mathematical Society of Japan (ISSN:00255645)
巻号頁・発行日
vol.68, no.4, pp.1669-1694, 2016 (Released:2016-10-27)
参考文献数
32
被引用文献数
9

In this paper we present many new families of identities for multiple harmonic sums using binomial coefficients. Some of these generalize a few recent results of Hessami Pilehrood, Hessami Pilehrood and Tauraso [Trans. Amer. Math. Soc. 366 (2014), pp.3131–3159]. As applications we prove several conjectures involving multiple zeta star values (MZSV): the Two-one formula conjectured by Ohno and Zudilin, and a few conjectures of Imatomi et al. involving 2-3-2-1 type MZSV, where the boldfaced 2 means some finite string of 2's.
著者
Tetsuji Shioda
出版者
The Mathematical Society of Japan
雑誌
Journal of the Mathematical Society of Japan (ISSN:00255645)
巻号頁・発行日
vol.60, no.4, pp.1083-1105, 2008 (Released:2008-12-17)
参考文献数
19
被引用文献数
12

We determine the structure of the Mordell-Weil lattice, Néron-Severi lattice and the lattice of transcendental cycles for certain elliptic K3 surfaces. We find that such questions from algebraic geometry are closely related to the sphere packing problem, and a key ingredient is the use of the sphere packing bounds in establishing geometric results.
著者
HAMADA Naoki ICHIKI Shunsuke
出版者
一般社団法人 日本数学会
雑誌
Journal of the Mathematical Society of Japan (ISSN:00255645)
巻号頁・発行日
vol.73, no.3, pp.965-982, 2021
被引用文献数
1

<p>A multiobjective optimization problem is
著者
Shigeki YANO
出版者
一般社団法人 日本数学会
雑誌
Journal of the Mathematical Society of Japan (ISSN:00255645)
巻号頁・発行日
vol.3, no.2, pp.296-305, 1951 (Released:2006-08-29)
参考文献数
14
被引用文献数
71
著者
Saji Kentaro Sasaki Takeshi Yoshida Masaaki
出版者
The Mathematical Society of Japan
雑誌
Journal of the Mathematical Society of Japan (ISSN:00255645)
巻号頁・発行日
vol.61, no.2, pp.559-578, 2009-04-01
被引用文献数
3

The hyperbolic Schwarz map is defined in [SYY1] as a map from the complex projective line to the three-dimensional real hyperbolic space by use of solutions of the hypergeometric differential equation. Its image is a flat front ([GMM], [KUY], [KRSUY]), and generic singularities are cuspidal edges and swallowtail singularities. In this paper, for the two-parameter family of the confluent hypergeometric differential equations, we study the singularities of the hyperbolic Schwarz map, count the number of swallowtails, and identify the further singularities, except those which are apparently of type <I>A</I><SUB>5</SUB>. This describes creations/eliminations of the swallowtails on the image surfaces, and gives a stratification of the parameter space according to types of singularities. Such a study was made for a 1-parameter family of hypergeometric differential equation in [NSYY], which counts only the number of swallowtails without identifying further singularities.