著者
Nattee Cholwich Khamsemanan Nirattaya Theeramunkong Thanaruk Numao Masayuki
出版者
人工知能学会
雑誌
人工知能学会全国大会論文集 (ISSN:13479881)
巻号頁・発行日
vol.26, 2012

Positive and Unlabeled learning (PU learning) is a machine learning approach that focuses on generating a two-class classification model using only a set of positive examples, and a set of unlabeled examples. Various techniques have been proposed for PU learning. Most of the techniques try to detect a group of reliables negative examples from the given unlabeled examples. Then, a classification model can be incrementally built. In this paper, we propose a new technique for detecting the reliable negative examples based on the density of examples in the search space.

言及状況

Twitter (1 users, 1 posts, 0 favorites)

ある未分類事例の重心を正事例重心と未分類重心の組み合わせとして考えるという話らしい。 QT jsai2012:A Density-based Approach for Positive and Unlabeled Learning http://t.co/1upheby6

収集済み URL リスト