著者
Kristian Daly Jennifer Kelly Andrew W. Moran Robert Bristow Iain S. Young Andrew R. Cossins David Bravo Soraya P. Shirazi-Beechey
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
pp.2018.07.003, (Released:2018-11-09)
参考文献数
44
被引用文献数
12

Fish production is increasingly important to global food security. A major factor in maintaining health, productivity and welfare of farmed fish is the establishment and promotion of a stable and beneficial intestinal microbiota. Understanding the effects of factors such as host and environment on gut microbial community structure is essential for developing strategies for stimulating the establishment of a health-promoting gut-microbiota. We compared intestinal microbiota of common carp and rainbow trout, two fish with different dietary habits, sourced from various farm locations. There were distinct differences in the gut microbiota of carp and trout intestine. The microbiota of carp was dominated by Fusobacteriia and Gammaproteobacteria, while the trout microbiota consisted predominantly of Mollicutes and Betaproteobacteria. The majority of bacterial sequences clustered into a relatively low number of operational taxonomic units (OTUs) revealing a comparatively simple microbiota, with Cetobacterium, Aeromonas and Mycoplasma being highly abundant. Within each species, fish from different facilities were found to have markedly similar predominant bacterial populations despite distinctly different rearing environments, demonstrating intra-species uniformity and significant influence of host selectivity. This study demonstrates that in fish the host species imparts substantial impact in shaping the community structure of the intestinal microbiota.
著者
Gumpanat Mahipant Junichi Kato Naoya Kataoka Alisa S. Vangnai
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
pp.2018.06.001, (Released:2018-11-27)
参考文献数
49
被引用文献数
4

Given their applicability in genetic engineering, undomesticated Bacillus strains are extensively used as non-natural hosts for chemical production due to their high tolerance of toxic substrates or products. However, they are difficult to genomically modify due to their low transformation efficiencies. In this study, the Bacillus-E. coli shuttle vector pHY300PLK, which is widely used in gram-positive bacteria, was adopted for genome integration in organic solvent-tolerant Bacillus isolates. The Bacillus-replicative vector was used to deliver homologous recombinant DNA and propagate itself inside the host cell, increasing the likelihood of genome integration of the recombinant DNA. Then, the unintegrated vectors were cured by cell cultivation in antibiotic-free medium with facilitation of nickel ions. The developed protocol was successfully demonstrated and validated by the disruption of amyE gene in B. subtilis 168. With an improved clonal selection protocol, the probability of clonal selection of the amyE::cat genome-integrated mutants was increased up to 42.0 ± 10.2%. Genome integration in undomesticated, organic solvent tolerant Bacillus strains was also successfully demonstrated with amyE as well as proB gene creating the gene-disrupted mutants with the corresponding phenotype and genotype. Not only was this technique effectively applied to several strains of undomesticated B. subtilis, but it was also successfully applied to B. cereus. This study validates the possibility of the application of Bacillus-replicative vector as well as the developed protocol in a variety of genome modification of undomesticated Bacillus species.
著者
Xiaochi Zhang Tomomi Nakahara Shinji Murase Hideaki Nakata Tetsushi Inoue Toshiaki Kudo
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
vol.59, no.1, pp.1-10, 2013 (Released:2013-03-22)
参考文献数
20
被引用文献数
1 22

Various aerobic culturable bacteria (1,133 isolates) were isolated from the gut of Apostichopus japonicus (black adult, green adult, black small, green small, black juvenile, and green juvenile sea cucumbers) and from the sea sediment and the seawater using different culture conditions and without enrichment culture. By molecular analysis of partial 16S rRNA gene sequences of 231 isolates, they were tentatively affiliated with 53 described species in the phyla Firmicutes (42 species), Proteobacteria (9 species) and Actinobacteria (2 species). Eighteen species were often found among the intestines and the sea sediment. High diversity was observed in the genus Bacillus (20 species), Oceanobacillus and Virgibaillus but there were no isolates affiliated to members of the genus Vibrio, well-known sea pathogens. There were no clear differences in the bacterial communities among the hosts varied in size and color. Most isolates showed various polysaccharide degradation activities, suggesting their possible contributions in the digestion of organic matters in the gut.
著者
Anil Kumar Pinnaka Naga Radha Srinivas Tanuku Sasikala Chintalapati Venkata Ramana Chintalapati Süling Jorg Imhoff Johannes
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
vol.55, no.2, pp.163-169, 2009
被引用文献数
18

A green sulfur bacterium, strain JAGS6<Sup>T</Sup> was isolated from a marine aquaculture pond located near Kakinada on the east coast of India. Cells of strain JAGS6<Sup>T</Sup> were Gram-negative, non-motile, coccoid, 1-1.2 µm in diameter, with prosthecae. Phylogenetic analysis on the basis of 16S rRNA gene sequences showed that strain JAGS6<Sup>T</Sup> clusters with members of the genus <I>Prosthecochlo</I><I>ris </I>and the sequence similarity with the nearest relative, <I>Prosthecochloris vibrioformis,</I> is 96.7%<I>. </I>Cultures of strain JAGS6<Sup>T</Sup> are green in color and the cells contain bacteriochlorophyll <I>c</I> and most likely carotenoids of the chlorobactene series as photosynthetic pigments. Strain JAGS6<Sup>T</Sup> is mesophilic, halotolerant (up to 7% NaCl) and is obligately phototrophic, utilizing sulfide but not thiosulfate as a photosynthetic electron donor. Sulfur globules are deposited outside the cells during oxidation of sulfide. On the basis of 16S rRNA gene sequence analysis and its morphological and physiological characteristics, strain JAGS6<Sup>T</Sup> is distinct from described species of the genus <I>Prosthecochloris </I>and we propose to describe it as a new species, <I>Prosthecochloris indica,</I> sp. nov. The type strain is JAGS6<Sup>T</Sup> (= JCM 13299<Sup>T </Sup>= ATCC BAA1214<Sup>T</Sup>).
著者
Masanori Horie Taisuke Koike Sakiko Sugino Aya Umeno Yasukazu Yoshida
出版者
Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
雑誌
The Journal of General and Applied Microbiology (ISSN:00221260)
巻号頁・発行日
pp.2017.03.002, (Released:2017-12-08)
参考文献数
29
被引用文献数
14

The aim of this study was to determine the probiotic and the prebiotic-like properties of Bacillus subtilis BN, a spore-forming bacterium, also known as “natto-kin”, which is used for making the Japanese fermented food, natto. We used the spores and vegetative cells of this strain and compared their effects on the growth of lactobacilli. Culture supernatant from B. subtilis BN was added to a glucose-free MRS medium used to culture lactobacilli. When lactobacilli were cultured in the supernatant-containing medium, growth was improved. This effect resulted from the digestion of starch by amylase, which was secreted by B. subtilis. Moreover, improved amylase-independent growth was also observed. Co-culture with B. subtilis improved the growth of lactobacilli, and this effect was only observed with vegetative cells; spores did not improve the growth of lactobacilli. This effect on growth was lost upon heat treatment of the vegetative cells. These results suggest that the surface protein of B. subtilis BN vegetative cells participates in the improved growth effect of lactobacilli. It is possible that B. subtilis BN could improve the intestinal flora. In addition, B. subtilis BN inhibited the growth of Salmonella enterica. Thus, it was shown that B. subtilis BN has both a probiotic and prebiotic potential. This is the first study demonstrating the selective growth improvement of indigenous intestinal lactobacilli using B. subtilis BN.