著者
Kawasaki Takeshi Iwasaki Tomohito Yamada Michi Yoshida Takashi Watanabe Takafumi
出版者
PLOS
雑誌
PLoS ONE
巻号頁・発行日
vol.13, no.2, pp.e0193307-1-e0193307-14, 2018-02
被引用文献数
30

The high incidence of meat of impaired quality poses a serious problem in the poultry industry. In recent years, the incidence of the pectoralis major muscle that appeared pale colored, remarkably hardened, and exudative, called “wooden breast” or “woody breast” has increased in slaughter houses. In the present study, 19-day-old Ross 308 broiler chickens affected (n = 10) and unaffected (n = 10) with remarkably hardened breast were selected from a commercial broiler farm, and reared to 55 days of age under a controlled environment. Among the affected birds, 5 of 10 birds appeared exhausted with markedly suppressed weight gain and 4 of 10 birds died during the rearing period. In contrast, all unaffected birds survived and most gained weight. Four of 10 unaffected birds lost the ability of back-to-back wing contact by the late stage of rearing. The biochemical analysis of blood plasma samples of 20-day-old birds revealed that creatine kinase and L-aspartate aminotransferase values in most affected birds were higher than those in unaffected birds; however, these values in unaffected birds increased rapidly with lost wing contactability and increasing age. Postmortem examinations revealed that the mean diameter of myofibers in affected birds was smaller than that in unaffected birds. Moreover, symptoms of degenerative and regenerative muscles were observed in most birds in both groups. Among them, a decrease in, or defect of, the characteristic polygonal shape of myofibers was the most common change within the pectoralis major muscles in both groups. The present study demonstrated that broilers affected with remarkably hardened breast during the middle stage of rearing would have suppressed physical status and weight gain, or would die. It was suggested that rapid growth in broilers might be a cause of remarkably hardened breast.
著者
Kadoya Ryosuke Matsumoto Ken'ichiro Ooi Toshihiko Taguchi Seiichi
出版者
PLOS
雑誌
PLOS one (ISSN:19326203)
巻号頁・発行日
vol.10, no.6, 2015-06-04
被引用文献数
19

Bacterial polyester polyhydroxyalkanoates (PHAs) have been produced in engineered Escherichia coli, which turned into an efficient and versatile platform by applying metabolic and enzyme engineering approaches. The present study aimed at drawing out the latent potential of this organism using genome-wide mutagenesis. To meet this goal, a transposon-based mutagenesis was carried out on E. coli, which was transformed to produce poly (lactate-co-3-hydroxybutyrate) from glucose. A high-throughput screening of polymer-accumulating cells on Nile red-containing plates isolated one mutant that produced 1.8-fold higher quantity of polymer without severe disadvantages in the cell growth and monomer composition of the polymer. The transposon was inserted into the locus within the gene encoding MtgA that takes part, as a non-lethal component, in the formation of the peptidoglycan backbone. Accordingly, the mtgA-deleted strain E. coli JW3175, which was a derivate of superior PHA-producing strain BW25113, was examined for polymer production, and exhibited an enhanced accumulation of the polymer (7.0 g/l) compared to the control (5.2 g/l). Interestingly, an enlargement in cell width associated with polymer accumulation was observed in this strain, resulting in a 1.6-fold greater polymer accumulation per cell compared to the control. This result suggests that the increase in volumetric capacity for accumulating intracellular material contributed to the enhanced polymer production. The mtgA deletion should be combined with conventional engineering approaches, and thus, is a promising strategy for improved production of intracellularly accumulated biopolymers.