- 著者
-
Yuki SAITO
Shinnosuke TAKAMICHI
Hiroshi SARUWATARI
- 出版者
- The Institute of Electronics, Information and Communication Engineers
- 雑誌
- IEICE TRANSACTIONS on Information and Systems (ISSN:09168532)
- 巻号頁・発行日
- vol.E100-D, no.8, pp.1925-1928, 2017-08-01
This paper proposes Deep Neural Network (DNN)-based Voice Conversion (VC) using input-to-output highway networks. VC is a speech synthesis technique that converts input features into output speech parameters, and DNN-based acoustic models for VC are used to estimate the output speech parameters from the input speech parameters. Given that the input and output are often in the same domain (e.g., cepstrum) in VC, this paper proposes a VC using highway networks connected from the input to output. The acoustic models predict the weighted spectral differentials between the input and output spectral parameters. The architecture not only alleviates over-smoothing effects that degrade speech quality, but also effectively represents the characteristics of spectral parameters. The experimental results demonstrate that the proposed architecture outperforms Feed-Forward neural networks in terms of the speech quality and speaker individuality of the converted speech.