- 著者
-
Shuang WANG
Hui CHEN
Lei DING
He SUI
Jianli DING
- 出版者
- The Institute of Electronics, Information and Communication Engineers
- 雑誌
- IEICE TRANSACTIONS on Information and Systems (ISSN:09168532)
- 巻号頁・発行日
- vol.E106-D, no.7, pp.1209-1218, 2023-07-01
- 被引用文献数
-
1
The issue of a low minority class identification rate caused by data imbalance in anomaly detection tasks is addressed by the proposal of a GAN-SR-based intrusion detection model for industrial control systems. First, to correct the imbalance of minority classes in the dataset, a generative adversarial network (GAN) processes the dataset to reconstruct new minority class training samples accordingly. Second, high-dimensional feature extraction is completed using stacked asymmetric depth self-encoder to address the issues of low reconstruction error and lengthy training times. After that, a random forest (RF) decision tree is built, and intrusion detection is carried out using the features that SNDAE retrieved. According to experimental validation on the UNSW-NB15, SWaT and Gas Pipeline datasets, the GAN-SR model outperforms SNDAE-SVM and SNDAE-KNN in terms of detection performance and stability.