著者
覺本 真代 坂本 靖英 宮崎 晋行 青木 一男 瀧口 晃 安井 彩 森 二郎
出版者
一般社団法人 資源・素材学会
雑誌
Journal of MMIJ (ISSN:18816118)
巻号頁・発行日
vol.134, no.9, pp.117-130, 2018-09-30 (Released:2018-09-12)
参考文献数
37

Depressurization process is regarded as the most effective process for gas recovery method from the viewpoints of gas productivity and economic efficiency among in-situ dissociation processes of Methane Hydrate (MH) existing in marine sediments. However, it is supposed that consolidation and deformation of the stratum occurs due to MH dissociation and increase of effective stress in the stratum during operation of depressurization. Consolidation and deformation wreak negative friction on the production well. As a result, the production well may suffer large compressive or tensile stress. In the worst case, it may cause shear failure, tension failure and crushing. Therefore, in order to improve the accuracy for evaluation of stress distribution occurring on production well during depressurization, it is necessary to construct the numerical model enable to reproduce unsteady change of the relationship between shear stress and strain occurring on the contact surface between well and layer and introduce into geo-mechanical simulator. In this study, targeting three contact surface locating above depressurization interval such as 1) casing-cement, 2) casing-layer and 3) cement-layer consisting of different material, we conducted push-out test in laboratory in order to evaluate the frictional behavior at these contact surface based on the relationship between displacement and axial load. From experimental observation, it was found that shear stress occurring on the contact surface linearly increased at the initial stage in the case of steel-cement specimen. On the other hand, for specimens consisting steel-clay and cement-clay, non-linear increase of shear stress was confirmed in the process leading to the shear strength. In addition, shear strength τmax for each contact surface increased depending on effective stress σ ', effective friction angle δ' and effective cohesion c' as failure criteria was estimated based on τmax and σ '. Then, constitutive equation of variable compliance type was applied for reproduction of the relationship between displacement and shear stress observed in a series of push-out test. Through numerical simulation by introduction of this constitutive equation, we confirmed the validity of modeling of the frictional behavior.

言及状況

外部データベース (DOI)

Twitter (1 users, 1 posts, 0 favorites)

MMIJ「Jounal of MMIJ」J-STAGE新規公開(2018/9/12) 論文「メタンハイドレート生産井における異種材料間接触面摩擦挙動のモデル化−メタンハイドレート貯留層の地層変形挙動予測に関する研究 (第3報) −」 覺本真代, 坂本靖英, 宮崎晋行, 青木一男ほか DOI https://t.co/CVDsMU2b1N ♯MMIJ ♯JofMMIJ

収集済み URL リスト