著者
佐藤 修一
出版者
一般社団法人日本応用数理学会
雑誌
日本応用数理学会論文誌 (ISSN:09172246)
巻号頁・発行日
vol.7, no.2, pp.171-187, 1997-06-15

In our previous paper[17], we naturally generalized the Morse code and we found the associative generalized Fibonacci sequences. Further we studied in[18]the matrix representation of these generalized sequences. In this paper, we introduce a new code which is developed by our preceding studies of the generalized Morse code. Moreover, we examine an efficient algorithm for generating codewords of the new code systematically and show that the number of codeword of equal lengths gives more widely generalized Fibonacci sequences. Subsequently we also introduce the associated widely generalized Lucas numbers and we study the direct representation of these n-th terms of the newly generalized Fibonacci and Lucas sequences by making use of matrices. Furthermore, we study some extended properities concerning these widely generalized sequences.

言及状況

Twitter (1 users, 1 posts, 0 favorites)

広義に拡張されたフィボナッチ数を与える広義の拡張モールス符号とその拡張数の行列表現/鶴岡工業高等専門学校数学科 佐藤修一 http://ci.nii.ac.jp/naid/110001883651

Wikipedia (1 pages, 1 posts, 1 contributors)

編集者: 敷島健一
2020-10-31 02:32:15 の編集で削除されたか、リンク先が変更された可能性があります。

収集済み URL リスト