著者
本道 貴行 黄瀬 浩一
出版者
一般社団法人電子情報通信学会
雑誌
電子情報通信学会技術研究報告. PRMU, パターン認識・メディア理解 (ISSN:09135685)
巻号頁・発行日
vol.108, no.484, pp.171-176, 2009-03-06
被引用文献数
5

SIFT(Scale-Invariant Feature Transform)などの局所特徴量を用いて,大規模特定物体認識を行う場合には,データベースに保持しておく局所特徴量(特徴ベクトル)の数が増大する.そのため,メモリ容量の削減が課題となる.本稿では,局所特徴量のベクトル量子化の手法と,取捨選択の方法によって,メモリ容量の削減を試みる.実験の結果,ベクトル量子化では,好ましい結果は得られなかった.一方,局所特徴量の取捨選択では,スケール耐性を犠牲にすることにはなるものの,入力画像のスケールがおおよそ決まっていれば,無削減のデータベースの1/10程度にしても,認識率はほとんど変化しないことが分かった.

言及状況

はてなブックマーク (1 users, 1 posts)

収集済み URL リスト