- 著者
-
中原 孝信
宇野 毅明
羽室 行信
- 出版者
- 一般社団法人情報処理学会
- 雑誌
- 研究報告アルゴリズム(AL) (ISSN:09196072)
- 巻号頁・発行日
- vol.2013, no.27, pp.1-8, 2013-10-30
本研究は,Twitter の投稿内容に,データ研磨技術を用いたマイクロクラスタリングを利用することで,単語の共起関係に基づいたクラスタによる概念を構築する.そして興味対象となるツイートをできる限り多く被覆するような少数のクラスタを,ナップサック制約付き最大被覆問題を用いて抽出することで,投稿内容の要約を行う.抽出されたクラスタは,ある特定のツイート群の文章を特徴付ける単語のグループとして捉えることができ,それらを概念として扱う事で,単語を独立に扱った場合に比べて,すぐれた要約になっていることを示す.計算実験では,テレビアニメーション番組「宇宙兄弟」に関する投稿内容を対象にして提案手法を適用した.This research proposes a method to detect the contents of Twitter posts by analyzing the contents of tweets posted by viewers watching a specific TV program whenever the number of posts increase dramatically and then to summarize that content. First the proposed method creates concepts from clusters based on the co-occurrence of words. Then posts during tweet bursts are taken to be tweets of interest, and a minimal number of clusters that cover as much as possible those tweets are extracted using a knapsack-constrained maximum covering problem. A computational experiment shows the effectiveness of the proposed method with reference to a TV animation program "Space Brothers."