著者
和泉 潔 後藤 卓 松井 藤五郎
出版者
The Japanese Society for Artificial Intelligence
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
vol.25, no.3, pp.383-387, 2010
被引用文献数
5 7

In this study, we proposed a new text-mining methods for long-term market analysis. Using our method, we analyzed monthly price data of financial markets; Japanese government bond market, Japanese stock market, and the yen-dollar market. First we extracted feature vectors from monthly reports of Bank of Japan. Then, trends of each market were estimated by regression analysis using the feature vectors. As a result, determination coefficients were over 75%, and market trends were explained well by the information that was extracted from textual data. We compared the predictive power of our method among the markets. As a result, the method could estimate JGB market best and the stock market is the second.

言及状況

外部データベース (DOI)

Twitter (1 users, 2 posts, 0 favorites)

こんな論文どうですか? テキスト情報による金融市場変動の要因分析(和泉 潔ほか),2010 https://t.co/sWSmVFwuoT In this study, we pro…
こんな論文どうですか? テキスト情報による金融市場変動の要因分析(和泉 潔ほか),2010 https://t.co/lBLuW70MVq In this study, we pro…

収集済み URL リスト