- 著者
-
和泉 潔
後藤 卓
松井 藤五郎
- 出版者
- 一般社団法人 人工知能学会
- 雑誌
- 人工知能学会論文誌 (ISSN:13460714)
- 巻号頁・発行日
- vol.26, no.2, pp.313-317, 2011 (Released:2011-01-06)
- 参考文献数
- 12
- 被引用文献数
-
1
In this study, we propose a new text-mining method for long-term market analysis. Using our method, we performe out-of-sample tests using monthly price data of financial markets; Japanese government bond market, Japanese stock market, and the yen-dollar market. First we extract feature vectors from monthly reports of Bank of Japan. Then, trends of each market are estimated by regression analysis using the feature vectors. As a result of comparison with support vector regression, the proposal method could forecast in higher accuracy about both the level and direction of long-term market trends. Moreover, our method showed high returns with annual rate averages as a result of the implementation test.