著者
吉武 睦海 土山 聡宏 高木 節雄
出版者
一般社団法人 日本鉄鋼協会
雑誌
鉄と鋼 (ISSN:00211575)
巻号頁・発行日
vol.98, no.6, pp.223-228, 2012 (Released:2012-05-31)
参考文献数
17
被引用文献数
3 22

Stable austenitic stainless steels containing 0.1 % carbon and nitrogen (Fe-18%Cr-12%Ni-0.1%C and Fe-18%Cr-12%Ni-0.1%N alloys) were tensile-tested to clarify the difference between the effects of carbon and nitrogen on the work hardening behavior as well as the deformation microstructure development in austenite. The carbon-added steel exhibited a much larger work hardening rate than the nitrogen-added steel in the high strain region (true strain > 0.25) although the dislocation accumulation was more significant in the nitrogen-added steel. EBSD analysis revealed that deformation twins were more frequently formed in the carbon-added steel, which leads to the TWIP effect. The reason why the nitrogen-added steel showed the less twinning behavior seemed to be mainly related with the short range order (SRO) composed of Cr and N atoms.