著者
和田 伸一郎
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第37回 (2023) (ISSN:27587347)
巻号頁・発行日
pp.2H4OS3b03, 2023 (Released:2023-07-10)

本研究の目的は, ベクトル空間での単語埋め込みモデルを使った方法が, 構造主義的社会学(ブルデューなど)において検討された方法を高次元で実現できることの有用性, 応用可能性を示すことにある。後者の方法とは, 社会的空間内での行為者たちの間の相対的位置の関係(距離)を重視する関係論的分析の方法を指す。具体的には, 「育児休暇」に関するTwitterデータを収集し, 高次元のベクトル表現データを作成し, 三次元座標空間へのマッピング, クラスタリングを行うことによって, 公的空間からは見えにくい多面的な視点から, 行為者の多様な実践を一定程度可視化することを行った。
著者
和田 伸一郎
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会全国大会論文集 第33回全国大会(2019)
巻号頁・発行日
pp.3Rin216, 2019 (Released:2019-06-01)

本研究では、2016年に行われた東京都知事選挙の選挙期間中に投稿されたTwitterデータを、Pythonを用いてクラスター分析した(2016年7月13日 - 8月1日、480万ツイート、1億7000万語)。クラスタ分析として、Pythonのライブラリであるgensimに実装されているword2vecアルゴリズムを用いて単語をベクトル化し、次に、次元圧縮アルゴリズムであるt-SNE(t-distributed Stochastic Neighbor Embedding)を用いてクラスタを三次元で可視化することを試みた。特に本研究では、クラスタリングにデータ・ヴィジュアライゼーション・ツールであるEmbedding Projectorを使用した。このツールを用いて、動的な学習プロセスを三次元空間で可視化し、インタラクティヴに三次元空間を動かしながら、クラスタを目視によって特定することを試みた。結果として、高い精度で複数のクラスタを特定することができた。 またこれによって、この都知事選挙でTwitterユーザーが何に興味を持ったのかを一定程度、明確にすることができた。