著者
佐々木 裕 磯崎 秀樹 鈴木 潤 国領 弘治 平尾 努 賀沢 秀人 前田 英作
出版者
一般社団法人情報処理学会
雑誌
情報処理学会論文誌 (ISSN:18827764)
巻号頁・発行日
vol.45, no.2, pp.635-646, 2004-02-15
被引用文献数
12

近年,大量の文書を用いて自然文によるユーザからの質問に答える質問応答(QA: Question Answering)システムに関する研究が注目を集めている.これまでいくつかのQAシステムが開発されてきたが,それらの多くは人手で作成されたルールや評価関数を用いて,質問の答えを大量の文書から抽出するアプローチをとっていた.これに対し,本論文では,機械学習技術を用いて,日本語QAシステムの主要なコンポーネントをそれぞれ学習データから構築することにより,QAシステム全体を構築する方法について述べる.具体的には,質問タイプや答えの判定を2クラス分類問題としてとらえ,質問文やその正解例から学習された分類器により,これらの機能を実現する.本アプローチのフィージビリティの確認のため,機械学習手法Support Vector Machine(SVM)を用いて学習型QAシステムSAIQA-IIを実装し,2 000問の質問・正解データによるシステム全体の5分割交差検定を行った.その結果,システムの性能として,MRR値で約0.4,5位以内正解率で約55%の正解率が得られることが明らかになった.This paper describes a Japanese Question-Answering(QA) System, SAIQA-II.These years, researchers have been attracted to the study of developingOpen-Domain QA systems that find answers to a natural language question given by a user.Most of conventional QA systems take an approach to manually constructing rules and evaluation functions to find answers to a question.This paper regards the specifications of main components of a QA system,question analysis and answer extraction, as 2-class classification problems.The question analysis determines the question type of a given question andthe answer extraction selects answer candidates thatmatch the question types. To confirm the feasibility of our approach,SAIQA-II was implemented using Support Vector Machines (SVMs).We conducted experiments on a QA test collection with 2,000 question-answer pairs based on 5-fold cross validation.Experimental results showed that the trained system achieved about 0.4 in MRR andabout 55% in TOP5 accuracy.