- 著者
-
小村 友希
坂本 航
尾崎 知伸
- 出版者
- 一般社団法人 人工知能学会
- 雑誌
- 人工知能学会全国大会論文集 第33回全国大会(2019)
- 巻号頁・発行日
- pp.3F4OS14b04, 2019 (Released:2019-06-01)
不完全情報ゲームの一つである人狼ゲームでは,各プレイヤがそれぞれ役職を持ち,村人陣営と人狼陣営に分かれてゲームを行う.役職・陣営の推定は,勝敗を左右する基本的な能力の一つであると認識され,精力的に研究が行われているが,その多くは推定精度の向上を主たる目的としている.しかし,より高度で戦略的に行動するエージェントを実現するためには,高い推定精度はもちろんのこと,推定の根拠や基準を明示化し,エージェントの構築に対して直接的にフィードバックを行えることが望ましいと考えられる.これらのことを背景に,本論文では,役職・陣営推定モデルの解釈を目的とした明示的推定理由の抽出を行った.具体的には,第4回人狼知能大会決勝戦のログデータを対象とし,決定木およびランダムフォレストによる推定モデルの構築と,inTreesによる解釈可能モデルの抽出を行い,これらの結果を比較,考察した.