著者
石川 晃 金子 慶之 太田 努 磯崎 行雄
出版者
公益社団法人 東京地学協会
雑誌
地学雑誌 (ISSN:0022135X)
巻号頁・発行日
vol.120, no.1, pp.52-64, 2011-02-25 (Released:2011-05-20)
参考文献数
59
被引用文献数
2 2 3

The western Pacific region, where the Eurasia, Australia, and Pacific plates currently interact, has been recognized as an important site for constraining the origins and emplacement of ophiolites (particularly for island-arc or supra-subduction zone types), because the spatial distribution of oceanic micro-plates and numerous ophiolitic rocks along their convergent margins infers possible genetic linkages among them. Mafic-ultramafic rocks distributed in the Timor-Tanimbar island chain, eastern Indonesia may be a good example of the on-going emplacement of the marginal basin lithosphere on the continental margin in the arc-continent collision zone, and are recognized as a possible modern analogue for Mesozoic Tethyan-type ophiolites (e.g. Troodos and Oman) in the Alpine-Himalayan orogenic system. Geological occurrence suggests that the buoyant subduction of the Australian continent uplifted fragments of newly formed mantle-crust section, which extends to neighboring pre-emplaced forearc marginal basins. However, from petrological and geochemical points of view, young pillowed basalt, dolerite, and gabbroic cumulate commonly possess island-arc signatures, whereas structurally underlying peridotites are mostly fertile (lherzolitic) in composition. This suggests that the crustal section is not linked to the underlying mantle by a genetic melt-and-residua relationship, as inferred from the lack of complete succession and the presence of abundant crosscutting structures. This inconsistency leads to the emergence of two contrasting models accounting for the unusual occurrence of a fertile mantle in the forearc setting of the Timor-Tanimbar region: (1) thrust-stacked fragments of the subcontinental mantle originally exhumed in the rifting stage of Australia; (2) depth-related heterogeneities in the lithospheric part of the mantle wedge. We note that the current debates on the origins of fertile lherzolites found throughout the Tethyan sutures and western Pacific regions can be settled through a better understanding of Timor-Tanimbar peridotite masses by age-dating studies employing several radiogenic isotope systematics.