著者
山口 知宏
出版者
公益社団法人 日本薬学会
雑誌
YAKUGAKU ZASSHI (ISSN:00316903)
巻号頁・発行日
vol.136, no.2, pp.197-202, 2016-02-01 (Released:2016-02-01)
参考文献数
17
被引用文献数
1

A drug's effectiveness against a disease depends not only on its interaction with receptors but also its pharmacokinetics (absorption, distribution, metabolism, and extrusion; ADME). ATP binding cassette (ABC) multidrug transporters are important proteins that influence the ADME properties of a drug, especially the ABC transporter subfamily B member 1 (ABCB1). Elucidation of the molecular mechanisms of ABCB1 will contribute to our understanding of the molecular basis of ADME. Human ABCB1 is expressed in many organelles, and exports various substrates from cells using energy generated by its ATP hydrolase (ATPase) activity. The ATPase activity depends on the concentration of the transport substrates, and the characteristic behavior of the substrate-dependent ATPase activity can be related to the molecular mechanism of ABCB1. Recently, we have revealed the molecular mechanisms of a eukaryotic ABCB1 homolog, CmABCB1, based on structural and functional studies. In this review, I discuss the relationship between key structural features and the behavior of transport substrate-dependent ATPase activity of CmABCB1, including its role in determining the molecular basis of ADME.