著者
吉沢 滋 中條 秀彦 秋庭 直樹 辻村 健一 長島 均 丸藤 貴史 木下 裕一郎 黒木 佳史 種市 修浩 千葉 豊治 坪井 則昭
出版者
一般社団法人電子情報通信学会
雑誌
電子情報通信学会総合大会講演論文集
巻号頁・発行日
vol.1995, no.2, 1995-03-27
被引用文献数
4

デジタル磁気記録読出し波形を数ビット(bと略)毎に切出し、ニューラルネット(NNと略)に学習、認識させるニューロ弁別(この様に略)はNNの学習能力により、干渉波形を学習させる事で高密度弁別が可能となり、NNの未学習入力も認識する汎化能力により、記録密度変動にも強い特徴を持つ。この二つの特徴とその実現可能性はシミュレーションですでに示した。また、この方法は従来の1b波形中の1点の振幅或は位相で判断するのではなく、数bの波形全体で判断するいわば波形弁別なので、高周波正弦波雑音や、幅の狭いパルス雑音に強い特徴的な雑音弁別特性をも持つ。ニューロ弁別の学習は高密度波形と低密度波形の二つを学習させると、NNの汎化能力により、その中間及び、付近の範囲外も認識できる。しかし、高密度学習波形の記録密度、振幅の選び方は難しく、弁別限界(どこまで高密度波形を弁別できるか)に大きく影響する。アナログニューロ弁別で学習波形の振幅と密度を組合せた学習法を試み、従来を上回る弁別限界が得られたので、報告する。
著者
木下 裕一郎 吉沢 滋 種市 修浩 加藤 貴文 降旗 浩司
出版者
一般社団法人電子情報通信学会
雑誌
電子情報通信学会ソサイエティ大会講演論文集
巻号頁・発行日
vol.1996, no.2, 1996-09-18
被引用文献数
2

デジタル磁気記録読出し波形を数ビット(bと略)毎に切出し、ニューラルネット(NNと略)に学習、認識させるニューロ弁別(この様に略)はNNの学習能力により、干渉波形を学習させる事で高密度弁別が可能となり、NNの未学習入力も認識する汎化能力により、記録密度変動にも強い特徴を持つ。この二つの特徴とその実現可能性はシミュレーションですでに示した。また、この方法は従来の1b波形中の1点の振幅或は位相で判断するのではなく、数bの波形全体で判断するいわば波形弁別なので、高周波正弦波雑音や、幅の狭いパルス雑音に強い特徴的な雑音弁別特性をも持つ事がわかっている。しかし、ランダム雑音では1点の雑音レベルでなく入力する全サンプリング点での雑音レベル:ランダム雑音波形が問題なので、取扱いが難しくこれまでエラーレート評価ができないでいた。ここでランダム雑音エラーレートの問題点、線密度と雑音の関係、研究手法等について、まだ模索中ではあるがこれまでの考察結果を述べる。