著者
杉山 弘晃 目黒 豊美 東中 竜一郎 南 泰浩
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
vol.30, no.1, pp.183-194, 2015-01-06 (Released:2015-01-06)
参考文献数
18
被引用文献数
1 1

The development of open-domain conversational systems is difficult since user utterances are too flexible for such systems to respond properly. To address this flexibility, previous research on conversational systems has selected system utterances from web articles based on word-level similarity with user utterances; however, the generated utterances, which originally appeared in different contexts from the conversation, are likely to contain irrelevant information with respect to the input user utterance. To leverage the variety of web corpus in order to respond to the flexibility and suppress the irrelevant information simultaneously, we propose an approach that generates system utterances with two strongly related phrase pairs: one that composes the user utterance and another that has a dependency relation to the former. By retrieving the latter one from the web, our approach can generate system utterances that are related to the topics of user utterances. We examined the effectiveness of our approach with following two experiments. The first experiment, which examined the appropriateness of response utterances, showed that our proposed approach significantly outperformed other retrieval and rule-based approaches. The second one was a chat experiment with people, which showed that our approach demonstrated almost equal performance to a rule-based approach and outperformed other retrieval-based approaches.
著者
杉山 弘晃 目黒 豊美 吉川 雄一郎 大和 淳司
出版者
人工知能学会
雑誌
人工知能学会全国大会論文集 (ISSN:13479881)
巻号頁・発行日
vol.31, 2017

現在の雑談対話システムでは、雑談で観測される幅広い話題の間の連続性を正しく認識することが容易でないため、文脈とつながらない話題を発話し対話を破綻させてしまう問題がある。一方、ロボットを複数体化することで、ユーザ発話中の話題に対する応答義務が緩和されるため、話題の連続性に対する要求を低減させ、破綻を回避できると予想される。本研究では、このロボット複数体化による対話破綻回避効果について分析を行う。
著者
杉山 弘晃 目黒 豊美 東中 竜一郎
出版者
一般社団法人 人工知能学会
雑誌
人工知能学会論文誌 (ISSN:13460714)
巻号頁・発行日
pp.DSF-518, (Released:2015-12-15)
参考文献数
15

In conversational dialogue, a talker sometimes asks questions that relate to the other talker's personality, such as his/her favorites and experiences. This behavior also appears in conversational dialogues with a dialogue system; therefore, the system should be developed so that it responds to this kind of questions. Previous systems realized this function by creating question-answer pairs by hand. However, there is no work that examines the coverage of the created question-answer pairs over real conversations. This study analyzes a huge amount of question-answer pairs created by many question-generators, with one answer-generator for each character. Our analysis shows that 41% of personality questions that appeared in real conversations are covered by the created pairs. We also investigated the types of questions that are frequently asked.
著者
目黒 豊美 杉山 弘晃 東中 竜一郎 南 泰浩
出版者
人工知能学会
雑誌
人工知能学会全国大会論文集 (ISSN:13479881)
巻号頁・発行日
vol.28, 2014

人手で構築した発話生成ルールを用いる手法と,ユーザ発話の内容と係り受け関 にある内容を大量のテキストデータから抽出し発話生成に用いる統計的手法と の組み合わせに基づく対話システムの構築法を提案する.具体的には,二手法 が生成した発話から適切な発話を選択する手法を考案した.実験を通して本システ の有用性と課題を議論する.