- 著者
-
藤本 悠吾
中川 慧
今城 健太郎
南 賢太郎
- 出版者
- 一般社団法人 人工知能学会
- 雑誌
- 人工知能学会第二種研究会資料 (ISSN:24365556)
- 巻号頁・発行日
- vol.2022, no.FIN-029, pp.73-80, 2022-10-08 (Released:2022-10-01)
機械学習を用いた株価予測は実務的にも学術的にも重要であり、多くの研究がおこなわれている。それらのうち有望な方法の一つとして、株式市場のダイナミズムを考慮し、高い予測力と解釈可能性を兼ね備えた Trader-Company (TC) 法がある。一方、TC 法をはじめとする機械学習による株価予測手法は、点推定であり、その予測の不確実性が考慮できていないため、実務的な応用に際して懸念が生じる。そこで本研究では、Uncertainty Aware Trader-Company Method (UTC) 法という高い予測力を持ち、予測の不確実性を定量化できる株価予測手法を提案する。UTC 法は、TC 法を不確実性の推定を可能にする確率的モデリングと組み合わせることにより、不確実性を捉えながら、TC 法の予測力と解釈可能性を維持できる。理論的にも、UTC 法による推定分散が事後分散を反映し、かつ TC 法に対して予測の悪化につながるバイアス等を与えないことを証明できる。さらに、人工および実際の市場データに基づいた実証分析を行い UTC 法の有効性を確認した。人工データでは、予測が困難な状況や予測対象の分布の変化を UTC 法が検出できることを確認した。実際の市場データを用いた分析では、UTC 法による投資戦略がベースライン手法よりも高いリスク・リターン比を達成できることを示した。