著者
釜谷 昌幸
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.83, no.856, pp.17-00316-17-00316, 2017 (Released:2017-12-25)
参考文献数
20

This study is aimed at applying the performance-based maintenance (PBM) concept to determine inspection schedule. Previously, the time-based maintenance concept has been applied to determine the inspection schedule for nuclear plant components. In the PBM concept, frequency of inspection is determined by operation time before the inspection. Duration before the next inspection is extended if the component indicates no cracking for a long time. In this study, the change in structural reliability due to applying the PBM concept was investigated by probabilistic fracture mechanics analyses. In order to calculate the probability of leakage or fracture (failure probability), growth of fatigue cracks initiated at the primary coolant pipe of pressurized water reactor nuclear power plants was simulated considering variations in yield and tensile strengths, fatigue crack growth rate, initial crack shape and so on. It was demonstrated that the failure probability was reduced by performing inspections according to the time-based maintenance concept. Frequency rather than detectability of inspection had a larger impact on reducing the failure probability. It was shown that, by applying the PBM concept, the number of inspections could be reduced significantly without increasing the failure probability. It was concluded that the PBM concept could optimize the inspection schedule.
著者
釜谷 昌幸
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.84, no.858, pp.17-00457-17-00457, 2018 (Released:2018-02-25)
参考文献数
8

Structural integrity of cracked pipes is assessed by predicting crack growth. In the fitness-for-service code of the Japan Society of Mechanical Engineers (JSME), the crack growth is predicted using stress intensity factor at the deepest and surface points. A semi-elliptical crack is assumed not to become deeper than a semi-circular crack. However, in reality, the stress corrosion cracking initiated at nickel alloy welds stops growing at the fusion line and becomes deeper than a semi-circular crack. Furthermore, crack shape is close to a rectangular shape rather than a semi-elliptical shape. In this study, validity of the JSME code procedure was discussed for predicting the growth of stress corrosion cracking at nickel alloy welds. Crack growth was simulated by finite element analysis together with an auto meshing technique. Various residual stress distributions and retardation of the crack growth at the fusion line were considered in the simulation. It was demonstrated that the growth prediction procedure prescribed in the JSME code brought about a conservative prediction even if the crack became deeper than the depth of a semi-circular shape crack. It was revealed that, when the growth to the surface direction was retarded at the fusion line, the change in crack size in the depth direction could be predicted conservatively by the current JSME procedure. It was suggested that, when the retardation at the fusion line is assumed in the growth prediction, the crack shape should be modelled by a rectangular shape.
著者
黒田 雅利 釜谷 昌幸 山田 輝明 秋田 貢一
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.83, no.852, pp.17-00072-17-00072, 2017 (Released:2017-08-25)
参考文献数
13

In order to assess the fatigue damage of austenitic stainless steels by electron backscatter diffraction (EBSD) method more simply and easily, it should be more preferable to use a commercially available general-purpose EBSD analysis software rather than to employ an in-house developed EBSD analysis programme. In the present study, EBSD measurement was performed for Type 316 austenitic stainless steels subjected to cyclic loading, and the applicability of the EBSD parameter relevant to the pattern quality, which could be obtained by the commercial software, to the fatigue damage assessment was discussed by comparing the other EBSD parameter of the averaged local misorientation (Mave), which could be calculated by the in-house developed programme. As a result, the EBSD parameter relevant to the pattern quality, which signified the full width at half maximum (FWHM) of the histogram distribution of the image quality (IQ), was saturated at the beginning stage of the fatigue cycles, while Mave was increased monotonically with the cycles. This suggested that the FWHM of IQ could be useful to detect the initial stage of the fatigue damage, while Mave was suitable for the quantitative evaluation of the fatigue damage. XRD measurement was also carried out for the same samples employed in the EBSD measurement, and the XRD data was compared with the EBSD data to discuss the crystallographic mechanism of the change in the FWHM of IQ. As a result, it was found that the FWHM of the (111) XRD peak correlated well with the FWHM of IQ. Because the (111) plane in fcc metal such as austenitic stainless steel was most preferable for slip system, this implied that the change in the distribution of the pattern quality generated by the fatigue loading could be due to the slip deformation.
著者
釜谷 昌幸 北條 智博 望月 正人
出版者
一般社団法人 日本機械学会
雑誌
日本機械学会論文集 (ISSN:21879761)
巻号頁・発行日
vol.80, no.817, pp.SMM0252-SMM0252, 2014 (Released:2014-09-25)
参考文献数
44
被引用文献数
2 2

Load carrying capacity of austenitic stainless steel component is increased due to hardening caused by neutron irradiation if no crack is included in the component. On the other hand, if a crack is initiated in the reactor components, the hardening may decrease the load carrying capacity due to reduction in fracture toughness. In this paper, in order to develop a failure assessment procedure of irradiated cracked components, characteristics of change in failure strength of stainless steels due to cold working were investigated. It was experimentally shown that the proof and tensile strengths were increased by the cold working, whereas the fracture toughness was decreased. The fracture strengths of a cylinder with a circumferential surface crack were analyzed using the obtained material properties. Although the cold working altered the failure mode from plastic collapse to the unsteady ductile crack growth, it did not reduce failure strengths even if 50% cold working was applied. The increase in failure strength was caused not only by increase in flow stress but also by reduction in J-integral value, which was brought by the change in stress-strain curve. It was shown that the failure strength of the hardened stainless steel components could be derived by the two-parameter method, in which the change in material properties could be reasonably considered.