著者
Boqi LIU Congwen ZHU Jingzhi SU Shuangmei MA Kang XU
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.97, no.4, pp.913-925, 2019 (Released:2019-08-02)
参考文献数
50
被引用文献数
16 35

The northward shift of the Western North Pacific Subtropical High (WNPSH) in July 2018 broke the historical record since 1958 and resulted in extreme heat waves and casualties across Northeast Asia (NEA). In the present work, we associated this extreme WNPSH anomaly with the anomalies of barotropic anticyclone above NEA originating from the strongest positive tripole pattern of sea surface temperature anomaly (SSTA) in the North Atlantic in July. Both data analysis and numerical experiments indicated that the positive tripole SSTA pattern could produce an upper-tropospheric wave source over Europe, which stimulated an eastward propagating wave train along the subpolar westerly jet over the Eurasian Continent. When its anticyclonic node reached NEA, the WNPSH started to shift northward. After the cyclonic node in the circulation anomaly encountered the Tibetan Plateau (TP), atmospheric diabatic heating was enhanced over the eastern TP, initiating another subtropical wave train, which furthered the northward shift of the WNPSH. Therefore, the wave source over Europe was critical for the northward shift of the WNPSH in July, connecting the tripole SSTA pattern in the North Atlantic with the WNPSH anomaly and maintaining the downstream effects of thermal forcing over the eastern TP on the East Asian summer monsoon.