著者
Ren Wu Ding Li Qi Tang Wanchun Wang Guangrong Xie Pengcheng Dou
出版者
The Pharmaceutical Society of Japan
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.41, no.4, pp.458-464, 2018-04-01 (Released:2018-04-01)
参考文献数
30
被引用文献数
12 13

Osteosarcoma (OS) is a typical bone cancer, and most frequently used cancer treatments for OS are limited due to severe drug-related toxicities. Wasp venoms contain functional components that may offer pharmaceutical components for the treatment of cancers. This study aimed to isolate and characterize a novel peptide (venom anti-cancer peptide 1, VACP1) derived from the wasp venom of Vespa ducalis SMITH. Toxins from Vespa ducalis crude venom were separated by gel filtration and purified by C18 reverse-phase HPLC. As examined by Edman degradation, the amino acid sequence of VACP1 is AQKWLKYWKADKVKGFGRKIKKIWFG. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays revealed that VACP1 inhibited the cell proliferation of MG-63, U-2 OS and Saos-2 cells. Furthermore, annexin V and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining revealed that VACP1 could induce the apoptosis of OS cell lines. In addition, VACP1 increased the protein levels of cleaved poly ADP-ribose polymerase (PARP), caspase 3, but decreased B-cell lymphoma 2 (Bcl-2). Apoptotic signaling pathway screening in MG-63 cells via an antibody array revealed that VACP1 activated the p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) pathways. The present study demonstrates that VACP1 potently suppressed cell proliferation and induced the cell apoptosis of OS cells by inducing the activation of the p38 MAPK and JNK signaling pathways, suggesting that VACP1 is a promising agent for OS therapy.
著者
Ding LI Chunxiang GU Yuefei ZHU
出版者
The Institute of Electronics, Information and Communication Engineers
雑誌
IEICE TRANSACTIONS on Information and Systems (ISSN:09168532)
巻号頁・発行日
vol.E105-D, no.6, pp.1172-1184, 2022-06-01
被引用文献数
1

Website Fingerprinting (WF) enables a passive attacker to identify which website a user is visiting over an encrypted tunnel. Current WF attacks have two strong assumptions: (i) specific tunnel, i.e., the attacker can train on traffic samples collected in a simulated tunnel with the same tunnel settings as the user, and (ii) pseudo-open-world, where the attacker has access to training samples of unmonitored sites and treats them as a separate class. These assumptions, while experimentally feasible, render WF attacks less usable in practice. In this paper, we present Gene Fingerprinting (GF), a new WF attack that achieves cross-tunnel transferability by generating fingerprints that reflect the intrinsic profile of a website. The attack leverages Zero-shot Learning — a machine learning technique not requiring training samples to identify a given class — to reduce the effort to collect data from different tunnels and achieve a real open-world. We demonstrate the attack performance using three popular tunneling tools: OpenSSH, Shadowsocks, and OpenVPN. The GF attack attains over 94% accuracy on each tunnel, far better than existing CUMUL, DF, and DDTW attacks. In the more realistic open-world scenario, the attack still obtains 88% TPR and 9% FPR, outperforming the state-of-the-art attacks. These results highlight the danger of our attack in various scenarios where gathering and training on a tunnel-specific dataset would be impractical.