著者
Kodera Kunihiko Eguchi Nawo Mukougawa Hitoshi Nasuno Tomoe Hirooka Toshihiko
出版者
European Geosciences Union (EGU)
雑誌
Atmospheric Chemistry and Physics (ISSN:16807324)
巻号頁・発行日
vol.17, no.1, pp.615-625, 2017-01-12
被引用文献数
3

Stratosphere–troposphere coupling is investigated in relation to middle atmospheric subtropical jet (MASTJ) variations in boreal winter. An exceptional strengthening of the MASTJ occurred in association with a sudden equatorward shift of the stratospheric polar night jet (PNJ) in early December 2011. This abrupt transformation of the MASTJ and PNJ had no apparent relation to the upward propagation of planetary waves from the troposphere. The impact of this stratospheric event penetrated into the troposphere in two regions: in the northern polar region and the tropics. Due to the strong MASTJ, planetary waves at higher latitudes were deflected and trapped in the northern polar region. Trapping of the planetary waves resulted in amplification of zonal wave number 1 component, which appeared in the troposphere as the development of a trough over the Atlantic sector and a ridge over the Eurasian sector. A strong MASTJ also suppressed the equatorward propagation of planetary waves, which resulted in weaker tropical stratospheric upwelling and produced anomalous warming in the tropical stratosphere. In the tropical tropopause layer (TTL), however, sublimation of ice clouds kept the temperature change minor. In the troposphere, an abrupt termination of a Madden–Julian Oscillation (MJO) event occurred following the static stability increase in the TTL. This termination suggests that the stratospheric event affected the convective episode in the troposphere.
著者
KODERA Kunihiko EGUCHI Nawo UEYAMA Rei FUNATSU Beatriz M. GAETANI Marco TAYLOR Christopher M.
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2021-055, (Released:2021-05-14)
被引用文献数
1

Previous studies have suggested that the recent increase in tropical extreme deep convection, in particular over Asia and Africa during the boreal summer, has occurred in association with a cooling in the tropical lower stratosphere. The present study is focused on the Sahel region of West Africa, where an increased occurrence of extreme precipitation events has been reported over recent decades. The results show that the changes over West Africa since the 1980s involve a cooling trend in the tropical lower stratosphere and tropopause layer, combined with a warming in the troposphere. This feature is similar to that which might result from increased greenhouse gas levels, but is distinct from the interannual variation of precipitation associated with the transport of water vapor from the Atlantic Ocean. It is suggested that the decrease in the vertical temperature gradient in the tropical tropopause region enhances extreme deep convection over the Sahel, where penetrating convection is frequent, whereas tropospheric warming suppresses the shallower convection over the Guinea Coast. The essential feature of the recent changes over West Africa is therefore the depth of convection, rather than the total amount of surface precipitation.