著者
Eri Kamon Chihiro Noda Takumi Higaki Taku Demura Misato Ohtani
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
pp.21.0519a, (Released:2021-09-18)
参考文献数
52
被引用文献数
4

Secondary cell walls (SCWs) accumulate in specific cell types of vascular plants, notably xylem vessel cells. Previous work has shown that calcium ions (Ca2+) participate in xylem vessel cell differentiation, but whether they function in SCW deposition remains unclear. In this study, we examined the role of Ca2+ in SCW deposition during xylem vessel cell differentiation using Arabidopsis thaliana suspension-cultured cells carrying the VND7-inducible system, in which VND7 activity can be post-translationally upregulated to induce transdifferentiation into protoxylem-type vessel cells. We observed that extracellular Ca2+ concentration was a crucial determinant of differentiation, although it did not have consistent effects on the transcription of VND7-downstream genes as a whole. Increasing the Ca2+ concentration reduced differentiation but the cells could generate the spiral patterning of SCWs. Exposure to a calcium-channel inhibitor partly restored differentiation but resulted in abnormal branched and net-like SCW patterning. These data suggest that Ca2+ signaling participates in xylem vessel cell differentiation via post-transcriptional regulation of VND7-downstream events, such as patterning of SCW deposition.
著者
Eri Kamon Chihiro Noda Takumi Higaki Taku Demura Misato Ohtani
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.38, no.3, pp.331-337, 2021-09-25 (Released:2021-09-25)
参考文献数
52
被引用文献数
4

Secondary cell walls (SCWs) accumulate in specific cell types of vascular plants, notably xylem vessel cells. Previous work has shown that calcium ions (Ca2+) participate in xylem vessel cell differentiation, but whether they function in SCW deposition remains unclear. In this study, we examined the role of Ca2+ in SCW deposition during xylem vessel cell differentiation using Arabidopsis thaliana suspension-cultured cells carrying the VND7-inducible system, in which VND7 activity can be post-translationally upregulated to induce transdifferentiation into protoxylem-type vessel cells. We observed that extracellular Ca2+ concentration was a crucial determinant of differentiation, although it did not have consistent effects on the transcription of VND7-downstream genes as a whole. Increasing the Ca2+ concentration reduced differentiation but the cells could generate the spiral patterning of SCWs. Exposure to a calcium-channel inhibitor partly restored differentiation but resulted in abnormal branched and net-like SCW patterning. These data suggest that Ca2+ signaling participates in xylem vessel cell differentiation via post-transcriptional regulation of VND7-downstream events, such as patterning of SCW deposition.