著者
Hiroshi Hisano Fumitaka Abe Robert E. Hoffie Jochen Kumlehn
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
pp.21019, (Released:2021-08-27)
被引用文献数
14

The recent advent of customizable endonucleases has led to remarkable advances in genetic engineering, as these molecular scissors allow for the targeted introduction of mutations or even precisely predefined genetic modifications into virtually any genomic target site of choice. Thanks to its unprecedented precision, efficiency, and functional versatility, this technology, commonly referred to as genome editing, has become an effective force not only in basic research devoted to the elucidation of gene function, but also for knowledge-based improvement of crop traits. Among the different platforms currently available for site-directed genome modifications, RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) endonucleases have proven to be the most powerful. This review provides an application-oriented overview of the development of customizable endonucleases, current approaches to cereal crop breeding, and future opportunities in this field.
著者
Mitsuko Kishi-Kaboshi Fumitaka Abe Yoko Kamiya Kanako Kawaura Hiroshi Hisano Kazuhiro Sato
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.40, no.3, pp.237-245, 2023-09-25 (Released:2023-09-25)
参考文献数
36
被引用文献数
1

Genome editing is a promising method for simultaneously mutagenizing homoeologs in the three subgenomes of wheat (Triticum aestivum L.). However, the mutation rate via genome editing must be improved in order to analyze gene function and to quickly modify agronomic traits in wheat. Here, we examined the Cas9-induced mutation rates in wheat plants using two promoters for single guide RNA (sgRNA) expression and applying heat treatment during Agrobacterium tumefaciens-mediated transformation. Using the TaU6 promoter instead of the OsU6 promoter from rice (Oryza sativa L.) to drive sgRNA expression greatly improved the Cas9-induced mutation rate. Moreover, a heat treatment of 30°C for 1 day during tissue culture increased the Cas9-induced mutation rate and the variety of mutations obtained compared to tissue culture at the normal temperature (25°C). The same heat treatment did not affect the regeneration rates of transgenic plants but tended to increase the number of transgene integration sites in each transgenic plant. These results lay the foundation for improving the Cas9-induced mutation rate in wheat to enhance research on gene function and crop improvement.
著者
Lipeng Zheng Fumitaka Abe Mariko Nonogaki Yuri Kanno Mitsunori Seo Hiroyuki Nonogaki Naoto Kawakami
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.40, no.1, pp.31-41, 2023-03-25 (Released:2023-03-25)
参考文献数
62
被引用文献数
1

Pre-harvest sprouting of cereals greatly reduces yield and quality of the grains. Abscisic acid (ABA) is an essential phytohormone for the induction and maintenance of seed dormancy. In this study, the ABA responsive promoter-driven ABA biosynthesis gene system was introduced to common wheat (Triticum aestivum L.) to enhance ABA production in the embryos and pre-harvest sprouting tolerance of the grains. This system consists of a wheat ABA responsive element containing Early-Methionine-labelled (EM) promoter and a sorghum 9-cis-epoxycarotenoid dioxygenase (SbNCED) gene which encodes an ABA biosynthesis rate-limiting enzyme. Twenty-three independent single-insertion lines were obtained, from which five homozygous lines showing various SbNCED expression levels were selected. Correlations were observed between SbNCED expression, ABA accumulation in the embryos and enhanced dormancy levels of the grains. The engineered wheat grains exhibited a few day-delay in germination, which should be effective in reducing pre-harvest sprouting damage. However, the increase in ABA levels in the recombinant grains was moderate, which explains why germination was not completely suppressed. Further analysis indicated a concomitant increase in the expression of the ABA catabolic enzyme gene TaABA8′OH1 and in the levels of isoleucine-conjugated jasmonic acid, implying the presence of possible negative feedback regulation in the innate system, which should be overcome for future technology development. These findings advance an understanding of the regulatory mechanisms of hormone metabolism in seeds and facilitate the development of pre-harvest sprouting tolerance in cereal grains.
著者
Yoko Kamiya Fumitaka Abe Masafumi Mikami Masaki Endo Kanako Kawaura
出版者
Japanese Society for Plant Cell and Molecular Biology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.37, no.2, pp.247-251, 2020-06-25 (Released:2020-06-25)
参考文献数
11
被引用文献数
12

Genome editing using CRISPR/Cas9 is useful for common wheat because common wheat has allohexaploid nature and it can induce mutations simultaneously in three homoeologous genes. Although Agrobacterium-mediated transformation has advantages in genome editing, it still has low efficiency and requires relatively long time in wheat. Therefore, the use of guide RNAs (gRNAs) with efficient mutagenesis in vivo is one of the critical factors for producing genome-edited mutant lines in a short time. In this study, we targeted three genes in common wheat and established a rapid method for detection of mutations induced by the biolistic transient expression system. Biolistic transient expression of the gRNAs and Cas9 was achieved in immature wheat embryos. Mutations were detected a week later using PCR-RFLP and verified by the sequencing of genomic clones. We confirmed several types of mutations that occurred at different rates depending on the target sequences. Furthermore, frequencies of mutations tended to be higher at the targets that were edited at higher rates in the plants transformed by Agrobacterium. These results show that this method of rapid detection of edited mutations could be used for variety of applications, such as screening of target sequences or modified vectors for efficient CRISPR/Cas9 genome editing in wheat.