著者
Fumiya Sato Koh Iba Takumi Higaki
出版者
Japan Mendel Society, International Society of Cytology
雑誌
CYTOLOGIA (ISSN:00114545)
巻号頁・発行日
vol.86, no.2, pp.119-126, 2021-06-25 (Released:2021-06-25)
参考文献数
16
被引用文献数
4

The Arabidopsis thaliana stomatal complex contains a pair of guard cells surrounded by subsidiary cells, which assist in turgor-driven stomatal movement and receive water and ions. This transport, driven by environmental signals, involves a translocation factor of the plasma membrane proton pump H+-ATPase AHA1, PATROL1. In this study, we investigated the responses of PATROL1 to salinity and hyperosmotic stresses. Specifically, we analyzed the effects of 125 mM NaCl or 231 mM mannitol on the cotyledon pavement cell cortexes in transgenic A. thaliana seedlings expressing green fluorescent protein (GFP)-tagged PATROL1. Cells treated with NaCl had few GFP-PATROL1-labeled dot-like structures but contained unusual labeled large bodies and rod-like structures. Cells treated with mannitol had similar large bodies, but not rods, indicating that the rod-like structures form specifically under salinity stress conditions. Dual observations of GFP-PATROL1 and red fluorescent protein (RFP)-tagged AHA1 in stress-treated cells revealed that the latter did not accumulate in the stress-induced GFP-PATROL1 structures, suggesting that the stress-induced GFP-PATROL1 structures are not involved in RFP-AHA1 localization. Additionally, the primary root growth of the patrol1 mutant was more sensitive to NaCl treatment than was that of wild type. Thus, PATROL1 appears to contribute to salinity stress tolerance, possibly by regulating membrane trafficking.
著者
Masashi KOTSUGI Ichiro NAKAGAWA Kinta HATAKEYAMA HunSoo PARK Fumiya SATO Takanori FURUTA Fumihiko NISHIMURA Shuichi YAMADA Yasushi MOTOYAMA Young-Soo PARK Hiroyuki NAKASE
出版者
The Japan Neurosurgical Society
雑誌
Neurologia medico-chirurgica (ISSN:04708105)
巻号頁・発行日
pp.oa.2020-0154, (Released:2020-09-02)
参考文献数
33
被引用文献数
8

Carotid artery stenting (CAS) is performed as a treatment for carotid artery stenosis. However, lipid-rich plaques cause embolic complications and sequelae. Near-infrared spectroscopy (NIRS) can identify lipid components by applying a near-infrared absorption pattern, and the distribution of lipid components can be evaluated as the maximum lipid core burden index (maxLCBI). Intravascular ultrasound (IVUS) equipped with NIRS has been clinically applied recently, and its diagnostic usefulness and validation have been reported for coronary arteries; however, its consistency with actual pathological diagnosis in carotid artery lesions has not been validated. In this study, we investigated the consistency between the maxLCBI values and histopathological diagnoses. Patients with cervical carotid artery stenosis who underwent carotid endarterectomy (CEA) were examined in this prospective study. Pathological diagnosis was determined after NIRS evaluation, which was performed on the extracted plaques ex vivo. The histological slices of decalcified and paraffin-embedded sections were stained by hematoxylin–eosin (HE) and Elastica van Gieson (EVG), and for low-density lipoprotein (LDL), C-reactive protein (CRP), CD68, and glycophorin A. The correlation between maxLCBI values and histological findings. Seventy lesions assessed by NIRS were pathologically analyzed. There was a positive linear correlation between maxLCBI values and pathological findings as determined by HE (angle), HE (area%), EVG, CRP, and CD68 staining (respectively, r = 0.624, p <0.001; r = 0.578, p <0.001; r = 0.534, p <0.001; r = 0.723, p <0.001; r = 0.653, p <0.001). In conclusion, the maxLCBI values assessed by NIRS showed a significant positive linear correlation with pathological evaluations in carotid lesions. The maxLCBI values in carotid arteries are consistent with pathological evaluations.
著者
Masashi KOTSUGI Ichiro NAKAGAWA Kinta HATAKEYAMA HunSoo PARK Fumiya SATO Takanori FURUTA Fumihiko NISHIMURA Shuichi YAMADA Yasushi MOTOYAMA Young-Soo PARK Hiroyuki NAKASE
出版者
The Japan Neurosurgical Society
雑誌
Neurologia medico-chirurgica (ISSN:04708105)
巻号頁・発行日
vol.60, no.10, pp.499-506, 2020 (Released:2020-10-15)
参考文献数
33
被引用文献数
8

Carotid artery stenting (CAS) is performed as a treatment for carotid artery stenosis. However, lipid-rich plaques cause embolic complications and sequelae. Near-infrared spectroscopy (NIRS) can identify lipid components by applying a near-infrared absorption pattern, and the distribution of lipid components can be evaluated as the maximum lipid core burden index (maxLCBI). Intravascular ultrasound (IVUS) equipped with NIRS has been clinically applied recently, and its diagnostic usefulness and validation have been reported for coronary arteries; however, its consistency with actual pathological diagnosis in carotid artery lesions has not been validated. In this study, we investigated the consistency between the maxLCBI values and histopathological diagnoses. Patients with cervical carotid artery stenosis who underwent carotid endarterectomy (CEA) were examined in this prospective study. Pathological diagnosis was determined after NIRS evaluation, which was performed on the extracted plaques ex vivo. The histological slices of decalcified and paraffin-embedded sections were stained by hematoxylin–eosin (HE) and Elastica van Gieson (EVG), and for low-density lipoprotein (LDL), C-reactive protein (CRP), CD68, and glycophorin A. The correlation between maxLCBI values and histological findings. Seventy lesions assessed by NIRS were pathologically analyzed. There was a positive linear correlation between maxLCBI values and pathological findings as determined by HE (angle), HE (area%), EVG, CRP, and CD68 staining (respectively, r = 0.624, p <0.001; r = 0.578, p <0.001; r = 0.534, p <0.001; r = 0.723, p <0.001; r = 0.653, p <0.001). In conclusion, the maxLCBI values assessed by NIRS showed a significant positive linear correlation with pathological evaluations in carotid lesions. The maxLCBI values in carotid arteries are consistent with pathological evaluations.