著者
Umeda T. Ishitsuka Y. Isoya J. Son N. T. Janzén E. Morishita N. Ohshima T. Itoh H. Gali A.
出版者
American Physical Society
雑誌
Physical review B (ISSN:10980121)
巻号頁・発行日
vol.71, pp.193202, 2005-05
被引用文献数
55

Carbon vacancies (VC) are typical intrinsic defects in silicon carbides (SiC) and so far have been observed only in the form of positively charged states in p-type or semi-insulating SiC. Here, we present electron-paramagnetic-resonance (EPR) and photoinduced EPR (photo-EPR) observations of their negatively charged state (V<sub>C</sub><sup>-</sup>) in n-type 4H-SiC. This EPR center (called HEI1) is characterized by an electron spin of 1/2 in a Si-Si antibonding state of VC. First-principles calculations confirm that the HEI1 center arises from V<sub>C</sub><sup>-</sup> at hexagonal sites. The HEI1 spectrum shows a transition between C1h and C3v symmetries due to a fast reorientation effect reflected in the nature of this defect. The photo-EPR data suggest that V<sub>C</sub><sup>2-</sup> is the dominant form of VC when the Fermi level lies 1.1 eV below the conduction band.