著者
Kotaro BESSHO Kenji DATE Masahiro HAYASHI Akio IKEDA Takahito IMAI Hidekazu INOUE Yukihiro KUMAGAI Takuya MIYAKAWA Hidehiko MURATA Tomoo OHNO Arata OKUYAMA Ryo OYAMA Yukio SASAKI Yoshio SHIMAZU Kazuki SHIMOJI Yasuhiko SUMIDA Masuo SUZUKI Hidetaka TANIGUCHI Hiroaki TSUCHIYAMA Daisaku UESAWA Hironobu YOKOTA Ryo YOSHIDA
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.94, no.2, pp.151-183, 2016 (Released:2016-04-28)
参考文献数
66
被引用文献数
143 871

Himawari-8/9—a new generation of Japanese geostationary meteorological satellites-carry state-of-the-art optical sensors with significantly higher radiometric, spectral, and spatial resolution than those previously available in the geostationary orbit. They have 16 observation bands, and their spatial resolution is 0.5 or 1 km for visible and near-infrared bands and 2 km for infrared bands. These advantages, when combined with shortened revisit times (around 10 min for Full Disk and 2.5 min for sectored regions), provide new levels of capacity for the identification and tracking of rapidly changing weather phenomena and for the derivation of quantitative products. For example, fundamental cloud product is retrieved from observation data of Himawari-8 operationally. Based on the fundamental cloud product, Clear Sky Radiance and Atmospheric Motion Vector are processed for numerical weather prediction, and volcanic ash product and Aeolian dust product are created for disaster watching and environmental monitoring. Imageries from the satellites are distributed and disseminated to users via multiple paths, including Internet cloud services and communication satellite services.
著者
Hidehiko MURATA Kotaro SAITOH Yasuhiko SUMIDA
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.96B, pp.211-238, 2018 (Released:2018-11-15)
参考文献数
22
被引用文献数
10 12

The combination of three visible bands of the Advanced Himawari Imager (AHI) aboard Japan Meteorological Agency's (JMA) new-generation Himawari-8 and Himawari-9 geostationary meteorological satellites enables the production of true color imagery. True color is intuitively understandable to human analysts and beneficial for monitoring surface and atmospheric features. It is particularly useful when applied to frequent observations from a geostationary platform. In this article, we report on an application of a color reproduction approach based on the International Commission on Illumination (CIE) 1931 XYZ color system to imagery rendering. This approach allows the consideration of primary color (RGB) differences among satellite and output devices, which in turn cause differences in the colors reproduced. The RGB signals observed by the AHI are converted to XYZ tristimulus values, which are independent of the devices themselves, and then reconverted to RGB signals for output devices via the application of 3 × 3 conversion matrices. This article also covers an objective technique for the evaluation of the accuracy of XYZ values. The evaluation indicated that the combination of AHI native RGB bands is suboptimal for obtaining XYZ values as is, whereas a combination in which the green band is replaced by a pseudo band with a central wavelength of around 0.555 μm is optimal. The pseudo band is generated via regression with existing visible and near-infrared bands as predictor variables. The imagery produced using this approach was termed True Color Reproduction (TCR). This approach is applicable to other satellites that have several bands in the visible to near-infrared spectral range, and it has the potential for development toward the production of standardized sensor-independent true color imagery.