著者
Masashi YAMAZAKI Satoru KIDOAKI Hiromichi FUJIE Hiromi MIYOSHI
出版者
The Japan Society for Analytical Chemistry
雑誌
Analytical Sciences (ISSN:09106340)
巻号頁・発行日
vol.37, no.3, pp.447-453, 2021-03-10 (Released:2021-03-10)
参考文献数
35
被引用文献数
7

To establish a guideline for the design of cell culture substrates to control human mesenchymal stem cell (MSC) differentiation, we quantitatively characterized the heterogeneity in the responsiveness of MSCs to the elastic modulus of culture substrates. We analyzed the elastic modulus-dependent dynamics of a mechanotransducer, YAP, and an osteogenic differentiation factor, RUNX2, in three different MSC lots using a styrenated gelatin gel with controllable elastic modulus. The percentage of cells with YAP in the nucleus increased linearly with increases in the elastic modulus, reaching a plateau at 10 kPa for all the lots analyzed. The increase in the percentage with the substrate elastic modulus was described by the same linear function. The percentage of cells with RUNX2 nuclear localization also increased linearly with increases in the substrate elastic modulus, plateauing at 5 kPa, although the regression lines to the linearly increasing regions varied between lots. These similarities and differences in YAP and RUNX2 dynamics among cell populations are basis to design the substrate elastic modulus to manipulate YAP and RUNX2 localizations.
著者
Tom ICHINOHE Nobuo KANNO Yasuji HARADA Yukihiro FUJITA Hiromichi FUJIE Yasushi HARA
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.18-0501, (Released:2019-12-13)
被引用文献数
3

The aim of this study was to evaluate the normal range of motion of the canine tibiofemoral joint and the movement of the tibia relative to the femur, especially the internal/external rotation under flexion. Right stifle joints were harvested from eight skeletally mature Beagle dogs, which were euthanized for reasons unrelated to this study. All muscle tissue was removed from the limbs prior to testing. Flexion and extension tests were conducted using a robotic manipulator with six degrees-of-freedom. Cranial/caudal and medial/lateral displacement and varus/valgus and internal/external rotation were measured at various degrees of flexion. We observed that the tibia rotated internally at an increasing flexion angle with mean peak internal and external rotations of 20.0° ± 13.8° and 4.5° ± 3.6°, respectively. The tibia also tended to displace cranially at an increasing flexion angle, with a mean peak cranial displacement of 8.9 ± 4.4 mm; there was minimal medial displacement when increasing the flexion angle. Valgus rotation also tended to occur at an increasing flexion angle. During the flexion of the canine stifle joint, approximately 20° of internal tibial rotation occurred around the longitudinal axis, along with a rollback motion involving the cranial displacement of the tibia.