著者
PUTRI Nurfiena Sagita IWABUCHI Hironobu HAYASAKA Tadahiro
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-020, (Released:2018-01-23)
被引用文献数
12

Two case studies of Mesoscale Convective System (MCS) in Indonesian region were conducted by applying an improved GTG tracking algorithm and ICAS algorithm to Himawari-8 AHI infrared data. The first case over Java Island showed a land-originating MCS in the boreal winter, which coincided with a wet phase of Madden-Julian Oscillation (MJO) over the Maritime Continent. The second case showed the evolution of MCS under the influence of a strong vertical wind shear during the boreal summer. The cloud top height (CTH) of deep convective part in the first case was larger than that in the second case, while the temporal evolution of CTH was similar between two cases. For the anvil part, the median CTH of the second case was relatively stable at around 13 km, while that of the first case showed a considerable temporal variation ranging from 14 to 16 km. The cloud-particle effective radius (CER) of anvil increased after the period of maximum deep convective CTH in both cases, although the CER was slightly larger in the second case than in the first case. These differences in cloud properties between two cases were attributable to the background wind profiles.
著者
IWABUCHI Hironobu PUTRI Nurfiena Sagita SAITO Masanori TOKORO Yuka SEKIGUCHI Miho YANG Ping BAUM Bryan A.
出版者
(公社)日本気象学会
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-001, (Released:2017-09-15)
被引用文献数
44

An algorithm for retrieving the macroscopic, physical and optical properties of clouds from thermal infrared measurements is applied to the Himawari-8 multiband observations. A sensitivity study demonstrates that the addition of the single CO2 band of Himawari-8 is effective for the estimation of cloud top height. For validation, retrieved cloud properties are compared systematically with collocated active remote sensing counterparts with small time lags. While retrievals agree reasonably for single-layer clouds, multilayer cloud systems with optically thin upper clouds overlying lower clouds are the major source of error in the present algorithm. Validation of cloud products is critical for identifying the characteristics, advantages and limitation of each product and should be continued in the future. As an application example, data are analyzed for eight days in the vicinity of the New Guinea to study the diurnal cycle of the cloud system. The present cloud property analysis investigates cloud evolution through separation of different cloud types and reveals typical features of diurnal cycles related to the topography. Over land, middle clouds increase from 0900 to 1200 local solar time (LST), deep convective clouds develop rapidly during 1200–1700 LST with a subsequent increase in cirrus and cirrostratus cloud amounts. Over the ocean near coastlines, a broad peak of convective cloud fraction is seen in the early morning. The present study demonstrates the utility of frequent observations by Himawari-8 for life cycle study of cloud systems, owing to the ability to capture their continuous temporal variations.
著者
KHATRI Pradeep HAYASAKA Tadahiro IWABUCHI Hironobu TAKAMURA Tamio IRIE Hitoshi NAKAJIMA Takashi Y.
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-036, (Released:2018-04-09)
被引用文献数
9

The present study implements long-term surface observed radiation data (pyranometer observed global flux and sky radiometer observed spectral zenith transmittance data) of multiple SKYNET sites to validate water cloud optical properties (cloud optical depth COD and effective radius Re) observed from space by MODIS onboard TERRA and AQUA satellites and AHI onboard Himawari-8 satellite. Despite some degrees of differences in COD and Re between MODIS and AHI, they both showed common features when validated using surface based global flux data as well as cloud properties retrieved from sky radiometer observed zenith transmittance data. In general, CODs from both satellite sensors are found to overestimated when clouds are optically thin. Among a number of factors (spatial and temporal variations of cloud, sensor and solar zenith angles), the solar zenith angle (SZA) is found to have an impact on COD difference between reflectance based satellite sensor and transmittance based sky radiometer. The Re values from the sky radiometer and satellite sensor are generally poorly correlated. The difference in Re between the sky radiometer and satellite sensor is negatively correlated with COD difference between them, which is likely due to the inherent influence of Re retrieval precision on COD retrieval and vice versa in transmittance based sky radiometer.