著者
Jiawei BAO Bjorn STEVENS
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
vol.99, no.6, pp.1483-1499, 2021 (Released:2021-12-24)
参考文献数
34
被引用文献数
2 5

Understanding of the tropical atmosphere is elaborated around two elementary ideas, one being that density is homogenized on isobars, which is referred to as the weak temperature gradient (WTG), and the other being that the vertical thermal structure follows a moist-adiabatic lapse rate. This study uses simulations from global storm-resolving models to investigate the accuracy of these ideas. Our results show that horizontally, the density temperature appears to be homogeneous, but only in the mid- and lower troposphere (between 400 hPa and 800 hPa). To achieve a homogeneous density temperature, the horizontal absolute temperature structure adjusts to balance the horizontal moisture difference. Thus, water vapor plays an important role in the horizontal temperature distribution. Density temperature patterns in the mid- and lower troposphere vary by about 0.3 K on the scale of individual ocean basins but differ by 1 K among basins. We use equivalent potential temperature to explore the vertical structure of the tropical atmosphere, and we compare the results assuming the temperature following pseudo-adiabat and reversible-adiabat (isentropic) with the effect of condensate loading. Our results suggest that the tropical atmosphere in saturated convective regions tends to adopt a thermal structure that is isentropic below the zero-degree isotherm and pseudo-adiabatic above it. However, the tropical mean temperature is substantially colder and is set by the bulk of convection, which is affected by entrainment in the lower troposphere.