著者
Qidi Ying Mikaël Croyal Dick C Chan Valentin Blanchard Jing Pang Michel Krempf Gerald F Watts
出版者
Japan Atherosclerosis Society
雑誌
Journal of Atherosclerosis and Thrombosis (ISSN:13403478)
巻号頁・発行日
pp.63587, (Released:2022-06-08)
参考文献数
50
被引用文献数
1

Aim: Lipoprotein(a) (Lp(a)) is a low-density lipoprotein-like particle containing apolipoprotein(a) (apo(a)) that increases the risk of atherosclerotic cardiovascular disease (ASCVD) in familial hypercholesterolemia (FH). Postprandial redistribution of apo(a) protein from Lp(a) to triglyceride-rich lipoproteins (TRLs) may also increase the atherogenicity of TRL particles. Omega-3 fatty acid (ω3FA) supplementation improves postprandial TRL metabolism in FH subjects. However, its effect on postprandial apo(a) metabolism has yet to be investigated. Methods: We carried out an 8-week open-label, randomized, crossover trial to test the effect of ω3FA supplementation (4 g/day) on postprandial apo(a) responses in FH patients following ingestion of an oral fat load. Postprandial plasma total and TRL-apo(a) concentrations were measured by liquid chromatography with tandem mass spectrometry, and the corresponding areas under the curve (AUCs) (0-10h) were determined using the trapezium rule. Results: Compared with no ω3FA treatment, ω3FA supplementation significantly lowered the concentrations of postprandial TRL-apo(a) at 0.5 (−17.9%), 1 (−18.7%), 2 (−32.6%), and 3 h (−19.2%) (P<0.05 for all). Postprandial TRL-apo(a) AUC was significantly reduced with ω3FA by 14.8% (P<0.05). By contrast, ω3FA had no significant effect on the total AUCs of apo(a), apoC-III, and apoE (P>0.05 for all). The decrease in postprandial TRL-apo(a) AUC was significantly associated with changes in the AUC of triglycerides (r=0.600; P <0.01) and apoB-48 (r=0.616; P<0.01). Conclusions: Supplementation with ω3FA reduces postprandial TRL-apo(a) response to a fat meal in FH patients; this novel metabolic effect of ω3FA may have implications on decreasing the risk of ASCVD in patients with FH, especially in those with elevated plasma triglyceride and Lp(a) concentrations. However, the clinical implications of these metabolic findings require further evaluation in outcome or surrogate endpoint trials.
著者
Yong-Qiang Shan Yan-Ping Zhu Jing Pang Yan-Xiang Wang Dan-Qing Song Wei-Jia Kong Jian-Dong Jiang
出版者
公益社団法人日本薬学会
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.36, no.10, pp.1562-1569, 2013-10-01 (Released:2013-10-01)
参考文献数
41
被引用文献数
11 40

This study was designed to improve the absorption and hypoglycemic efficacy of berberine (BBR), which is a substrate of P-glycoprotein (P-gp), by combination with a P-gp inhibitor tetrandrine (Tet). Flow cytometry and LC-MS/MS were used to determine the cellular efflux or retention of chemicals. Pharmacokinetic study was performed in ICR mice following oral administration of the study compounds. The hypoglycemic efficacies of the compounds were evaluated in diabetic KK-Ay mice. In the in vitro experiments, Tet significantly inhibited the efflux and increased the uptake of P-gp substrates rhodamine-123 as well as BBR in MCF7/DOX cells and Caco-2 intestinal cells. Meanwhile, Tet greatly reduced the expression of P-gp in Caco-2 cells. The inhibition of BBR efflux by Tet was translated into improved pharmacokinetics in vivo. When co-administered, Tet dose-dependently increased the average maximum concentration (Cmax) and area under concentration–time curve (AUC0–24) of BBR in mice. Tet itself had no impact on glucose metabolism. However, it greatly potentiated the hypoglycemic efficacy of BBR in diabetic KK-Ay mice. In addition, we found that Tet had moderate inhibitory effect on the catalytic activity of CYP3A4, which played a role in the bio-transformation of BBR, and this may also take part in the improvement of the pharmacokinetics of BBR. In summary, combination with P-gp inhibitors such as Tet can improve the pharmacokinetics and hypoglycemic efficacy of BBR greatly; this implicates a feasible strategy for exploring the therapeutic effects of BBR and other pharmaceuticals which are substrates of P-gp.