著者
Norihito Kawashita Hiroyuki Yamasaki Tomoyuki Miyao Kentaro Kawai Yoshitake Sakae Takeshi Ishikawa Kenichi Mori Shinya Nakamura Hiromasa Kaneko
出版者
公益社団法人 日本化学会・情報化学部会
雑誌
Journal of Computer Aided Chemistry (ISSN:13458647)
巻号頁・発行日
vol.16, pp.15-29, 2015 (Released:2015-10-29)
参考文献数
192
被引用文献数
3 6

We have reviewed chemoinformatics approaches for drug discovery such as aromatic interactions, aromatic clusters, structure generation, virtual screening, de novo design, evolutionary algorithm, inverse-QSPR/QSAR, Monte Carlo, molecular dynamics, fragment molecular orbital method and matched molecular pair analysis from the viewpoint of young researchers. We intend to introduce various fields of chemoinformatics for non-expert researchers. The structure of this review is given as follows: 1. Introduction, 2. Analysis of Aromatic Interactions, 2.1 Aromatic Interactions, 2.2 Aromatic Clusters, 3. Ligand Based Structure Generation, 3.1 Virtual Screening, 3.2 De Novo Ligand Design, 3.3 Combinatorial Explosion, 3.4 Inverse-QSPR/QSAR, 4. Trends in Chemoinformatics-Based De Novo Drug Design, 5. Conformational Search Method Using Genetic Crossover for Bimolecular Systems, 6. Interaction Analysis using Fragment Molecular Orbital Method for Drug Discovery, 7. Matched Molecular Pair Analysis and SAR Analysis by Fragment Molecular Orbital Method, 8. Chemoinformatics Approach in Pharmaceutical Processes, 9. Conclusion.
著者
Yoshiki Tanahara Kaho Yamanaka Kentaro Kawai Yukiko Ando Takashi Nakatsuka
出版者
Japanese Society for Plant Biotechnology
雑誌
Plant Biotechnology (ISSN:13424580)
巻号頁・発行日
vol.39, no.3, pp.273-280, 2022-09-25 (Released:2022-09-25)
参考文献数
28

Matthiola incana is an important floricultural plant that blooms from winter to spring, and had been desired to be established a transformation system. This study successfully obtained stable transgenic plants from M. incana. We used Agrobacterium tumefaciens harboring a binary vector containing the β-glucuronidase gene (GUS) under the control of cauliflower mosaic virus 35S promoter to evaluate the transformation frequency of M. incana. We observed that cocultivation with the A. tumefaciens strain GV3101 for 5 days effectively enhanced the infection frequency, assessed through a transient GUS expression area in the seedling. Furthermore, the addition of 100 µM acetosyringone was necessary for Agrobacterium infection. However, we could not obtain transgenic plants on a shoot formation medium supplemented with 1 mg l−1 6-benzyladenine (BA). For callus formation from the leaf sections, a medium supplemented with 1–50 µM fipexide (FPX), a novel callus induction chemical, was employed. Then, the callus formation was observed after 2 weeks, and an earlier response was detected than that in the BA medium (4–6 weeks). Results also showed that cultivation in a selection medium supplemented with 12.5 µM FPX obtained hygromycin-resistant calli. Thus, this protocol achieved a 0.7% transformation frequency. Similarly, progenies from one transgenic line were observed on the basis of GUS stains on their leaves, revealing that the transgenes were also inherited stably. Hence, FPX is considered a breakthrough for establishing the transformation protocol of M. incana, and its use is proposed in recalcitrant plants.