著者
Eiichi Goto Tatsuaki Tagami Koki Ogawa Tetsuya Ozeki
出版者
The Pharmaceutical Society of Japan
雑誌
Biological and Pharmaceutical Bulletin (ISSN:09186158)
巻号頁・発行日
vol.46, no.10, pp.1461-1467, 2023-10-01 (Released:2023-10-01)
参考文献数
34

Since three-dimensional (3D)-printed tablets were approved by the United States Food and Drug Administration (FDA), 3D printing technology has garnered increasing interest for the fabrication of medical and pharmaceutical devices. With various dosing devices being designed for manufacture by 3D printing, 3D-printed ophthalmic formulations to release drugs have been one such target of investigation. In the current study, 3D-printed contact lenses designed for the controlled release of the antibiotic azithromycin were produced by vat photopolymerization, and the effect of the printer ink composition and a second curing process was investigated. The azithromycin-loaded contact lenses were composed of the cross-linking reagent polyethylene glycol diacrylate (PEGDA), PEG 400 as a solvent, a photoinitiator, and azithromycin. The 3D-printed contact lenses were fabricated successfully, and formulations with lower PEGDA concentrations produced thicker lenses. The mechanical strength of the PEGDA-based contact lenses was dependent on the amount of PEGDA and was improved by a second curing process. Drug release from 3D-printed contact lenses was reduced in the samples with a second curing process. The azithromycin-loaded contact lenses exhibited antimicrobial effects in vitro for both Gram-positive and -negative bacteria. These results suggest that 3D-printed contact lenses containing antibiotics are an effective model for treating eye infections by controlling drug release.
著者
Koki Ogawa Naoya Kato Shigeru Kawakami
出版者
The Pharmaceutical Society of Japan
雑誌
Chemical and Pharmaceutical Bulletin (ISSN:00092363)
巻号頁・発行日
vol.68, no.7, pp.567-582, 2020-07-01 (Released:2020-07-01)
参考文献数
187
被引用文献数
17

Because the brain is the most important human organ, many brain disorders can cause severe symptoms. For example, glioma, one type of brain tumor, is progressive and lethal, while neurodegenerative diseases cause severe disability. Nevertheless, medical treatment for brain diseases remains unsatisfactory, and therefore innovative therapies are desired. However, the development of therapies to treat some cerebral diseases is difficult because the blood–brain barrier (BBB) or blood–brain tumor barrier prevents drugs from entering the brain. Hence, drug delivery system (DDS) strategies are required to deliver therapeutic agents to the brain. Recently, brain-targeted DDS have been developed, which increases the quality of therapy for cerebral disorders. This review gives an overview of recent brain-targeting DDS strategies. First, it describes strategies to cross the BBB. This includes BBB-crossing ligand modification or temporal BBB permeabilization. Strategies to avoid the BBB using local administration are also summarized. Intrabrain drug distribution is a crucial factor that directly determines the therapeutic effect, and thus it is important to evaluate drug distribution using optimal methods. We introduce some methods for evaluating drug distribution in the brain. Finally, applications of brain-targeted DDS for the treatment of brain tumors, Alzheimer’s disease, Parkinson’s disease, and stroke are explained.