著者
Kosuke SODA Hirohisa MEKATA Tatsufumi USUI Hiroshi ITO Yuto MATSUI Kentaro YAMADA Tsuyoshi YAMAGUCHI Toshihiro ITO
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.23-0121, (Released:2023-09-26)

In the winter of 2021–2022, multiple subtypes (H5N8 and H5N1) of high pathogenicity avian influenza viruses (HPAIVs) were confirmed to be circulating simultaneously in Japan. Here, we phylogenetically and antigenically analyzed HPAIVs that were isolated from infected wild birds, an epidemiological investigation of affected poultry farms, and our own active surveillance study. H5 subtype hemagglutinin (HA) genes of 32 representative HPAIV isolates were classified into clade 2.3.4.4b lineage and subsequently divided into three groups (G2a, G2b, and G2d). All H5N8 HPAIVs were isolated in early winter and had HA genes belonging to the G2a group. H5N1 HPAIVs belong to the G2b and G2d groups. Although G2b viruses were widespread throughout the season, G2d viruses endemically circulated in Northeast Japan after January 2022. Deep sequence analysis showed that the four HPAIVs isolated at the beginning of winter had both N8 and N1 subtypes of neuraminidase genes. Environmental water-derived G2a HPAIV, A/water/Tottori/NK1201-2/2021 (H5N8), has unique polymerase basic protein 1 and nucleoprotein genes, similar to those of low pathogenicity avian influenza viruses (LPAIVs). These results indicate that multiple H5 HPAIVs and LPAIVs disseminated to Japan via transboundary winter migration of wild birds, and HPAIVs with novel gene constellations could emerge in these populations. Cross-neutralization test revealed that G2a H5N8 HPAIVs were antigenically distinct from a G2b H5N1 HPAIV, suggesting that antibody pressure in wild birds was involved in the transition of the HPAIV groups during the season.
著者
Kosuke SODA Tatsufumi USUI Tsuyoshi YAMAGUCHI Toshihiro ITO
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.23-0124, (Released:2023-06-16)
被引用文献数
1

During the 2020–2021 winter, Eurasian countries experienced large outbreaks caused by the clade 2.3.4.4b H5N8 subtype high pathogenicity avian influenza viruses (HPAIVs) in the wild bird populations. At least seven gene constellations have been found in the causal HPAIVs. When and where the various HPAIVs emerged remains unclear. Here, we successfully cloned H5N8 HPAIVs with multiple gene constellations from a tracheal swab of a dead mallard found at its wintering site in Japan in January 2021. According to their phylogeny, the bird was most likely co-infected with the E2 and E3 genotype clade 2.3.4.4b HPAIVs. The result indicates that feral waterbirds can be infected with multiple HPAIVs, and shed an HPAIV with novel gene constellation in Southern wintering sites.
著者
Kosuke SODA Yukiko TOMIOKA Tatsufumi USUI Hiroichi OZAKI Hiroshi ITO Yasuko NAGAI Naoki YAMAMOTO Masatoshi OKAMATSU Norikazu ISODA Masahiro KAJIHARA Yoshihiro SAKODA Ayato TAKADA Toshihiro ITO
出版者
JAPANESE SOCIETY OF VETERINARY SCIENCE
雑誌
Journal of Veterinary Medical Science (ISSN:09167250)
巻号頁・発行日
pp.23-0122, (Released:2023-07-26)
被引用文献数
2

In the winter of 2010–2011, Japan experienced a large outbreak of infections caused by clade 2.3.2.1 H5N1 high pathogenicity avian influenza viruses (HPAIVs) in wild birds. Interestingly, many tufted ducks (Aythya fuligula), which are migratory diving ducks, succumbed to the infection, whereas only one infection case was reported in migratory dabbling duck species, the major natural hosts of the influenza A virus, during the outbreak. To assess whether the susceptibility of each duck species to HPAIVs was correlated with the number of cases, tufted duck and dabbling duck species (Eurasian wigeon, Mareca penelope; mallard, Anas platyrhynchos; Northern pintail, Anas acuta) were intranasally inoculated with A/Mandarin duck/Miyazaki/22M807-1/2011 (H5N1), an index clade 2.3.2.1 virus previously used for experimental infection studies in various bird species. All ducks observed for 10 days post-inoculation (dpi) mostly shed the virus via the oral route and survived. The tufted ducks shed a higher titer of the virus than the other dabbling duck species, and one of them showed apparent neurological symptoms after 7 dpi, which were accompanied by eye lesions. No clinical symptoms were observed in the dabbling ducks, although systemic infection and viremia were observed in some of them sacrificed at 3 dpi. These results suggest that the susceptibility of clade 2.3.2.1 HPAIVs might differ by duck species.