- 著者
-
Hiroki WATANABE
Takao KONDO
Kunitake KANEKO
Fumio TERAOKA
- 出版者
- The Institute of Electronics, Information and Communication Engineers
- 雑誌
- IEICE TRANSACTIONS on Communications (ISSN:09168516)
- 巻号頁・発行日
- vol.E101-B, no.9, pp.1967-1981, 2018-09-01
Recently, application demands placed on the network have become more multifaceted. Highly functional application-to-application communication services such as bandwidth aggregation, fault tolerant communication, and delay/disruption tolerant networking (DTN) were developed independently in the network layer, the transport layer, and the application layer. As a result, protocol layering has become complicated. This paper proposes to insert Layer-5 (L5) between the application layer and the transport layer to separate communication policies and communication mechanisms to make protocol layering clearer. The transport layer (L4) provides end-to-end communication mechanisms such as reliable byte stream while L5 realizes communication policies such as bandwidth aggregation by combining the communication mechanisms in L4. This paper proposes five types of L5-paths as communication policies: (1) the L5 bundled path for bandwidth aggregation or fault tolerant communication, (2) the L5 spatially-spliced path for communication with middleboxes, (3) the L5 temporally-spliced path for DTN, (4) the L5 spliced-bundled path, and (5) the L5 bundled over spatially-spliced path. An application can select and use an appropriate L5-path depending on the network circumstances through a common API. A prototype of L5 is implemented in the Linux user space as a library to make deployment and maintenance easier. An evaluation shows that establishment time of L5-paths is short enough and performance of L5-paths is comparable or superior to existing technologies.