著者
Kuwayama Hidekazu Miyanaga Yukihiro Urushihara Hideko Ueda Masahiro
出版者
Public Library of Science
雑誌
PLoS ONE (ISSN:19326203)
巻号頁・発行日
vol.8, no.12, pp.e81811, 2013-12
被引用文献数
5

Background:The life-cycle of cellular slime molds comprises chronobiologically regulated processes. During the growth phase, the amoeboid cells proliferate at a definite rate. Upon starvation, they synthesize cAMP as both first and second messengers in signalling pathways and form aggregates, migrating slugs, and fruiting bodies, consisting of spores and stalk cells, within 24 h. In Dictyostelium discoideum, because most growth-specific events cease during development, proliferative and heterochronic mutations are not considered to be interrelated and no genetic factor governing the entire life-cycle duration has ever been identified.Methodology/Principal Findings:Using yeast 2-hybrid library screening, we isolated a Dictyostelium discoideum RabGAP, Dd Rbg-3, as a candidate molecule by which the Dictyostelium Gα2 subunit directs its effects. Rab GTPase-activating protein, RabGAP, acts as a negative regulator of Rab small GTPases, which orchestrate the intracellular membrane trafficking involved in cell proliferation. Deletion mutants of Dd rbg-3 exhibited an increased growth rate and a shortened developmental period, while an overexpression mutant demonstrated the opposite effects. We also show that Dd Rbg-3 interacts with 2 Gα subunits in an activity-dependent manner in vitro. Furthermore, both human and Caenorhabditis elegans rbg-3 homologs complemented the Dd rbg-3–deletion phenotype in D. discoideum, indicating that similar pathways may be generally conserved in multicellular organisms.Conclusions/Significance:Our findings suggest that Dd Rbg-3 acts as a key element regulating the duration of D. discoideum life-span potentially via trimeric G-protein cascades.
著者
Kuwayama Hidekazu Ishida Shuji
出版者
Nature Publishing Group
雑誌
Scientific reports (ISSN:20452322)
巻号頁・発行日
vol.3, pp.2272, 2013-07
被引用文献数
49

Solitons have been observed in various physical phenomena. Here, we show that the distinct characteristics of solitons are present in the mass cell movement of non-chemotactic mutants of the cellular slime mould Dictyostelium discoideum. During starvation, D. discoideum forms multicellular structures that differentiate into spore or stalk cells and, eventually, a fruiting body. Non-chemotactic mutant cells do not form multicellular structures; however, they do undergo mass cell movement in the form of a pulsatile soliton-like structure (SLS). We also found that SLS induction is mediated by adhesive cell-cell interactions. These observations provide novel insights into the mechanisms of biological solitons in multicellular movement.
著者
Kuwayama Hidekazu
出版者
Nature Publishing Group
雑誌
Scientific reports (ISSN:20452322)
巻号頁・発行日
vol.2, pp.577, 2012-08
被引用文献数
7

Caffeine is a globally consumed psychostimulant but can be fatal to cells at overdose exposures. Although caspase-dependent apoptosis plays a role in caffeine-induced cell death, the responsible intracellular signalling cascade remains incompletely understood. The cellular slime mould, Dictyostelium discoideum, does not possess caspase-dependent apoptotic machinery. Here, we observed that ablation of D. discoideum plaA, which encodes a phospholipase A2 (PLA2) homolog, leads to a decreased rate of cell death under high caffeine concentrations and to enhanced cell death with the addition of arachidonic acid. Moreover, the inhibition of PLA2 activity lead to a recovery of the survival rate in caspase-inhibited Hela cervical carcinoma cells under high caffeine concentrations, indicating that caffeine-induced cell death is enhanced via PLA2-dependent signalling. Our results indicate that arachidonic acid may be a general second messenger that negatively regulates caffeine tolerance via a caspase-independent cell death cascade, which leads to multiple effects in eukaryotic cells.