著者
KADOYA Toshiki MASUNAGA Hirohiko
出版者
Meteorological Society of Japan
雑誌
気象集誌. 第2輯 (ISSN:00261165)
巻号頁・発行日
pp.2018-054, (Released:2018-08-24)
被引用文献数
11

A new observational measure, or the morphological index for convective self-aggregation (MICA), is developed to objectively detect the signs of convective self-aggregation on the basis of a simple morphological diagnosis of convective clouds in the satellite imagery. The proposed index is applied to infrared imagery from the Meteosat-7 satellite and is assessed with the sounding-array measurements in the tropics from Cooperative Indian Ocean experiment on Intraseasonal variability in the Year of 2011 (CINDY2011)/Dynamics of the Madden-Julian Oscillation (MJO) (DYNAMO)/Atmospheric Radiation Measurements (ARM) MJO Investigation Experiment (AMIE). The precipitation events during the observational period are first classified by MICA into “aggregation events” and “non-aggregation events”. The large-scale thermodynamics implied from the sounding-array data are then examined with focus on the difference between the two classes. The composite time series show that a drying proceeds over 6-12 hours as precipitation intensifies in the aggregation events. Such a drying is unclear in the non-aggregation events. The moisture budget balance is maintained in very different manners between the two adjacent sounding arrays for the aggregation events, in contrast to the non-aggregation events which lack such apparent asymmetry. These results imply the potential utility of the proposed metrics for future studies in search of convective self-aggregation in the real atmosphere.