著者
Young-Jun Park Kazuhiro Nemoto Tomotaro Nishikawa Kenichi Matsushima Mineo Minami Makoto Kawase
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.59, no.4, pp.351-360, 2009 (Released:2009-12-18)
参考文献数
51
被引用文献数
17 20

A full-length cDNA clone encoding granule-bound starch synthase I (GBSSI = Waxy gene) from grain amaranth (Amaranthus cruentus L.) perisperm was isolated and characterized. Segregation of amylose content in F2 population suggested that the amylose content of A cruentus is controlled by a single gene, Waxy (GBSSI). cDNA clone of this gene is 2076 bp in length and contains an open reading frame of 1821 bp corresponding to a polypeptide of 606 amino acids residues, including a transit peptide of 77 amino acids. Comparison of the cDNA and genomic sequences (3492 bp) suggested that the amaranth GBSSI gene has 12 introns, of which exons 1–13 contributed to the coding sequence. The mature protein shares 70.2–75.3% sequence identity with GBSSI of dicots and about 64.0–67.8% identity with those of monocots. This protein contains the conserved motif KTGGL found in other GBSSI proteins, which has been implicated as the active site in glycogen synthase. Sequence analysis predicted that GBSSI of amaranth has a transit peptide of 77 amino acids including FIR↓S, which is different cleavage site that of the other dicot species. These results will provide more useful information for understanding the structure/function relationship of this protein from amaranths perisperm.
著者
Ken Naito Akito Kaga Norihiko Tomooka Makoto Kawase
出版者
日本育種学会
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.63, no.2, pp.176-182, 2013 (Released:2013-07-12)
参考文献数
11
被引用文献数
9 33

Since chloroplasts and mitochondria are maternally inherited and have unique features in evolution, DNA sequences of those organelle genomes have been broadly used in phylogenetic studies. Thanks to recent progress in next-generation sequencer (NGS) technology, whole-genome sequencing can be easily performed. Here, using NGS data generated by Roche GS Titanium and Illumina Hiseq 2000, we performed a hybrid assembly of organelle genome sequences of Vigna angularis (azuki bean). Both the mitochondrial genome (mtDNA) and the chloroplast genome (cpDNA) of V. angularis have very similar size and gene content to those of V. radiata (mungbean). However, in structure, mtDNA sequences have undergone many recombination events after divergence from the common ancestor of V. angularis and V. radiata, whereas cpDNAs are almost identical between the two. The stability of cpDNAs and the variability of mtDNAs was further confirmed by comparative analysis of Vigna organelles with model plants Lotus japonicus and Arabidopsis thaliana.