著者
Yusaku Noda Ryohei Sugita Atsushi Hirose Naoki Kawachi Keitaro Tanoi Jun Furukawa Ken Naito
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.72, no.4, pp.326-331, 2022 (Released:2022-11-05)
参考文献数
16
被引用文献数
6

Wild species in the genus Vigna are a great resource of tolerance to various stresses including salinity. We have previously screened the genetic resources of the genus Vigna and identified several accessions that have independently evolved salt tolerance. However, many aspects of such tolerance have remained unknown. Thus, we used autoradiography with radioactive sodium (22Na+) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to visualize and compare Na+ allocation in Vigna angularis (Willd.) Ohwi & H.Ohashi (azuki bean), Vigna nakashimae (Ohwi) Ohwi & H.Ohashi, Vigna riukiuensis (Ohwi) Ohwi & H.Ohashi, Vigna luteola (Jacq.) Benth. and Vigna marina (Burm.) Merr.. The results indicated: 1) Tolerant accessions suppress Na+ accumulation compared to azuki bean. 2) V. nakashimae and V. marina does so by accumulating higher amount of K+, whereas V. riukiuensis and V. luteola does so by other mechanisms. 3) V. luteola avoids salt-shedding by allocating excess Na+ to newly expanded leaves. As the mechanisms of the tolerant species were different, they could be piled up in a single crop via classical breeding or by genetic engineering or genome editing.
著者
Yusaku Noda Ryohei Sugita Atsushi Hirose Naoki Kawachi Keitaro Tanoi Jun Furukawa Ken Naito
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
pp.22012, (Released:2022-08-30)
被引用文献数
6

Wild species in the genus Vigna are a great resource of tolerance to various stresses including salinity. We have previously screened the genetic resources of the genus Vigna and identified several accessions that have independently evolved salt tolerance. However, many aspects of such tolerance have remained unknown. Thus, we used autoradiography with radioactive sodium (22Na+) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to visualize and compare Na+ allocation in Vigna angularis (Willd.) Ohwi & H.Ohashi (azuki bean), Vigna nakashimae (Ohwi) Ohwi & H.Ohashi, Vigna riukiuensis (Ohwi) Ohwi & H.Ohashi, Vigna luteola (Jacq.) Benth. and Vigna marina (Burm.) Merr.. The results indicated: 1) Tolerant accessions suppress Na+ accumulation compared to azuki bean. 2) V. nakashimae and V. marina does so by accumulating higher amount of K+, whereas V. riukiuensis and V. luteola does so by other mechanisms. 3) V. luteola avoids salt-shedding by allocating excess Na+ to newly expanded leaves. As the mechanisms of the tolerant species were different, they could be piled up in a single crop via classical breeding or by genetic engineering or genome editing.
著者
Ken Naito Yu Takahashi Bubpa Chaitieng Kumi Hirano Akito Kaga Kyoko Takagi Eri Ogiso-Tanaka Charaspon Thavarasook Masao Ishimoto Norihiko Tomooka
出版者
日本育種学会
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
pp.16184, (Released:2017-03-04)
被引用文献数
25

Seed size is one of the most important traits in leguminous crops. We obtained a recessive mutant of blackgram that had greatly enlarged leaves, stems and seeds. The mutant produced 100% bigger leaves, 50% more biomass and 70% larger seeds though it produced 40% less number of seeds. We designated the mutant as multiple-organ-gigantism (mog) and found the mog phenotype was due to increase in cell numbers but not in cell size. We also found the mog mutant showed a rippled leaf (rl) phenotype, which was probably caused by a pleiotropic effect of the mutation. We performed a map-based cloning and successfully identified an 8 bp deletion in the coding sequence of VmPPD gene, an orthologue of Arabidopsis PEAPOD (PPD) that regulates arrest of cell divisions in meristematic cells. We found no other mutations in the neighboring genes between the mutant and the wild type. We also knocked down GmPPD genes and reproduced both the mog and rl phenotypes in soybean. Controlling PPD genes to produce the mog phenotype is highly valuable for breeding since larger seed size could directly increase the commercial values of grain legumes.
著者
Yukari Masuta Akira Kawabe Kosuke Nozawa Ken Naito Atsushi Kato Hidetaka Ito
出版者
Japanese Society of Breeding
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
pp.17085, (Released:2018-03-24)
被引用文献数
14

In plants, several transposable elements are conserved across species. We found a homolog of ONSEN, which is a heat-activated retrotransposon originally isolated from Arabidopsis thaliana, in Vigna. The ONSEN-like elements (VaONS) were detected in all the analyzed Japanese accessions of Vigna angularis (adzuki bean) by Southern blot analysis. However, VaONS sequences were observed to be polymorphic in the different accessions. Interestingly, extrachromosomal DNA (ecDNA) was detected in some accessions of adzuki bean, indicating the conserved heat-activation of VaONS. Furthermore, we successfully induced retrotransposition of VaONS in adzuki plant regenerated through callus. Findings of our study should provide a new tool for molecular breeding of adzuki bean.
著者
Ken Naito Akito Kaga Norihiko Tomooka Makoto Kawase
出版者
日本育種学会
雑誌
Breeding Science (ISSN:13447610)
巻号頁・発行日
vol.63, no.2, pp.176-182, 2013 (Released:2013-07-12)
参考文献数
11
被引用文献数
9 33

Since chloroplasts and mitochondria are maternally inherited and have unique features in evolution, DNA sequences of those organelle genomes have been broadly used in phylogenetic studies. Thanks to recent progress in next-generation sequencer (NGS) technology, whole-genome sequencing can be easily performed. Here, using NGS data generated by Roche GS Titanium and Illumina Hiseq 2000, we performed a hybrid assembly of organelle genome sequences of Vigna angularis (azuki bean). Both the mitochondrial genome (mtDNA) and the chloroplast genome (cpDNA) of V. angularis have very similar size and gene content to those of V. radiata (mungbean). However, in structure, mtDNA sequences have undergone many recombination events after divergence from the common ancestor of V. angularis and V. radiata, whereas cpDNAs are almost identical between the two. The stability of cpDNAs and the variability of mtDNAs was further confirmed by comparative analysis of Vigna organelles with model plants Lotus japonicus and Arabidopsis thaliana.